The omega-reducibility of pseudovarieties of ordered monoids representing low levels of concatenation hierarchies

IF 0.5 2区 数学 Q3 MATHEMATICS
Jana Volaříková
{"title":"The omega-reducibility of pseudovarieties of ordered monoids representing low levels of concatenation hierarchies","authors":"Jana Volaříková","doi":"10.1142/s0218196724500024","DOIUrl":null,"url":null,"abstract":"<p>We deal with the question of the <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>ω</mi></math></span><span></span>-reducibility of pseudovarieties of ordered monoids corresponding to levels of concatenation hierarchies of regular languages. A pseudovariety of ordered monoids <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"sans-serif\"><mi>V</mi></mstyle></math></span><span></span> is called <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>ω</mi></math></span><span></span>-reducible if, given a finite ordered monoid <i>M</i>, for every inequality of pseudowords that is valid in <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"sans-serif\"><mi>V</mi></mstyle></math></span><span></span>, there exists an inequality of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>ω</mi></math></span><span></span>-words that is also valid in <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"sans-serif\"><mi>V</mi></mstyle></math></span><span></span> and has the same “imprint” in <i>M</i>.</p><p>Place and Zeitoun have recently proven the decidability of the membership problem for levels <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mo stretchy=\"false\">∕</mo><mn>2</mn></math></span><span></span>, 1, <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn><mo stretchy=\"false\">∕</mo><mn>2</mn></math></span><span></span> and <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mn>5</mn><mo stretchy=\"false\">∕</mo><mn>2</mn></math></span><span></span> of concatenation hierarchies with level 0 being a finite Boolean algebra of regular languages closed under quotients. The solutions of these membership problems have been found by considering a more general problem of separation of regular languages and its further generalization — a problem of covering. Following the results of Place and Zeitoun, we prove that, for every concatenation hierarchy with level 0 being represented by a locally finite pseudovariety of monoids, the pseudovarieties corresponding to levels <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mo stretchy=\"false\">∕</mo><mn>2</mn></math></span><span></span> and <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn><mo stretchy=\"false\">∕</mo><mn>2</mn></math></span><span></span> are <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>ω</mi></math></span><span></span>-reducible. As a corollary of these results, we obtain that, for every concatenation hierarchy with level 0 being represented by a locally finite pseudovariety of monoids, the pseudovarieties corresponding to levels <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn><mo stretchy=\"false\">∕</mo><mn>2</mn></math></span><span></span> and <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mn>5</mn><mo stretchy=\"false\">∕</mo><mn>2</mn></math></span><span></span> are definable by <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>ω</mi></math></span><span></span>-inequalities. Furthermore, in the special case of the Straubing–Thérien hierarchy, using a characterization theorem for level 2 by Place and Zeitoun, we obtain that the level 2 is definable by <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>ω</mi></math></span><span></span>-identities.</p>","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218196724500024","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We deal with the question of the ω-reducibility of pseudovarieties of ordered monoids corresponding to levels of concatenation hierarchies of regular languages. A pseudovariety of ordered monoids V is called ω-reducible if, given a finite ordered monoid M, for every inequality of pseudowords that is valid in V, there exists an inequality of ω-words that is also valid in V and has the same “imprint” in M.

Place and Zeitoun have recently proven the decidability of the membership problem for levels 12, 1, 32 and 52 of concatenation hierarchies with level 0 being a finite Boolean algebra of regular languages closed under quotients. The solutions of these membership problems have been found by considering a more general problem of separation of regular languages and its further generalization — a problem of covering. Following the results of Place and Zeitoun, we prove that, for every concatenation hierarchy with level 0 being represented by a locally finite pseudovariety of monoids, the pseudovarieties corresponding to levels 12 and 32 are ω-reducible. As a corollary of these results, we obtain that, for every concatenation hierarchy with level 0 being represented by a locally finite pseudovariety of monoids, the pseudovarieties corresponding to levels 32 and 52 are definable by ω-inequalities. Furthermore, in the special case of the Straubing–Thérien hierarchy, using a characterization theorem for level 2 by Place and Zeitoun, we obtain that the level 2 is definable by ω-identities.

代表低级串联层次的有序单体伪变体的欧米伽可复性
我们要讨论的问题是与正则表达式语言的连接层次相对应的有序单元的伪变体的ω-可还原性。如果给定一个有限有序单元 M,对于在 V 中有效的每一个伪词不等式,都存在一个在 V 中也有效并且在 M 中具有相同 "印记 "的 ω 词不等式,那么有序单元的伪变量 V 就被称为 ω 可还原性。Place 和 Zeitoun 最近证明了第 1∕2、1、3∕2 和 5∕2 层连接层次的成员资格问题的可解性,其中第 0 层是在商下封闭的正则表达式语言的有限布尔代数。这些成员问题的解法是通过考虑更一般的正则表达式语言分离问题及其进一步推广--覆盖问题--而找到的。根据 Place 和 Zeitoun 的研究成果,我们证明了,对于每个由局部有限单体伪变体表示第 0 层的连接层次,对应于第 1∕2 层和第 3∕2 层的伪变体都是ω-可还原的。作为这些结果的推论,我们得到,对于每一个层次 0 由局部有限的单体伪变体表示的并集层次,对应于层次 3∕2 和 5∕2 的伪变体都可以用 ω-inequalities 来定义。此外,在 Straubing-Thérien 层次结构的特殊情况下,利用 Place 和 Zeitoun 提出的层次 2 特性定理,我们可以得到层次 2 是可以用 ω-identity 来定义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
66
审稿时长
6-12 weeks
期刊介绍: The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信