{"title":"The omega-reducibility of pseudovarieties of ordered monoids representing low levels of concatenation hierarchies","authors":"Jana Volaříková","doi":"10.1142/s0218196724500024","DOIUrl":null,"url":null,"abstract":"<p>We deal with the question of the <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>ω</mi></math></span><span></span>-reducibility of pseudovarieties of ordered monoids corresponding to levels of concatenation hierarchies of regular languages. A pseudovariety of ordered monoids <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"sans-serif\"><mi>V</mi></mstyle></math></span><span></span> is called <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>ω</mi></math></span><span></span>-reducible if, given a finite ordered monoid <i>M</i>, for every inequality of pseudowords that is valid in <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"sans-serif\"><mi>V</mi></mstyle></math></span><span></span>, there exists an inequality of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>ω</mi></math></span><span></span>-words that is also valid in <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"sans-serif\"><mi>V</mi></mstyle></math></span><span></span> and has the same “imprint” in <i>M</i>.</p><p>Place and Zeitoun have recently proven the decidability of the membership problem for levels <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mo stretchy=\"false\">∕</mo><mn>2</mn></math></span><span></span>, 1, <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn><mo stretchy=\"false\">∕</mo><mn>2</mn></math></span><span></span> and <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mn>5</mn><mo stretchy=\"false\">∕</mo><mn>2</mn></math></span><span></span> of concatenation hierarchies with level 0 being a finite Boolean algebra of regular languages closed under quotients. The solutions of these membership problems have been found by considering a more general problem of separation of regular languages and its further generalization — a problem of covering. Following the results of Place and Zeitoun, we prove that, for every concatenation hierarchy with level 0 being represented by a locally finite pseudovariety of monoids, the pseudovarieties corresponding to levels <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mo stretchy=\"false\">∕</mo><mn>2</mn></math></span><span></span> and <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn><mo stretchy=\"false\">∕</mo><mn>2</mn></math></span><span></span> are <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>ω</mi></math></span><span></span>-reducible. As a corollary of these results, we obtain that, for every concatenation hierarchy with level 0 being represented by a locally finite pseudovariety of monoids, the pseudovarieties corresponding to levels <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn><mo stretchy=\"false\">∕</mo><mn>2</mn></math></span><span></span> and <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mn>5</mn><mo stretchy=\"false\">∕</mo><mn>2</mn></math></span><span></span> are definable by <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>ω</mi></math></span><span></span>-inequalities. Furthermore, in the special case of the Straubing–Thérien hierarchy, using a characterization theorem for level 2 by Place and Zeitoun, we obtain that the level 2 is definable by <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>ω</mi></math></span><span></span>-identities.</p>","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218196724500024","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We deal with the question of the -reducibility of pseudovarieties of ordered monoids corresponding to levels of concatenation hierarchies of regular languages. A pseudovariety of ordered monoids is called -reducible if, given a finite ordered monoid M, for every inequality of pseudowords that is valid in , there exists an inequality of -words that is also valid in and has the same “imprint” in M.
Place and Zeitoun have recently proven the decidability of the membership problem for levels , 1, and of concatenation hierarchies with level 0 being a finite Boolean algebra of regular languages closed under quotients. The solutions of these membership problems have been found by considering a more general problem of separation of regular languages and its further generalization — a problem of covering. Following the results of Place and Zeitoun, we prove that, for every concatenation hierarchy with level 0 being represented by a locally finite pseudovariety of monoids, the pseudovarieties corresponding to levels and are -reducible. As a corollary of these results, we obtain that, for every concatenation hierarchy with level 0 being represented by a locally finite pseudovariety of monoids, the pseudovarieties corresponding to levels and are definable by -inequalities. Furthermore, in the special case of the Straubing–Thérien hierarchy, using a characterization theorem for level 2 by Place and Zeitoun, we obtain that the level 2 is definable by -identities.
期刊介绍:
The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.