On the structure of finitely presented Bestvina–Brady groups

IF 0.5 2区 数学 Q3 MATHEMATICS
Priyavrat Deshpande, Mallika Roy
{"title":"On the structure of finitely presented Bestvina–Brady groups","authors":"Priyavrat Deshpande, Mallika Roy","doi":"10.1142/s0218196724500012","DOIUrl":null,"url":null,"abstract":"<p>Right-angled Artin groups and their subgroups are of great interest because of their geometric, combinatorial and algorithmic properties. It is convenient to define these groups using finite simplicial graphs. The isomorphism type of the group is uniquely determined by the graph. Moreover, many structural properties of right-angled Artin groups can be expressed in terms of their defining graph.</p><p>In this paper, we address the question of understanding the structure of a class of subgroups of right-angled Artin groups in terms of the graph. Bestvina and Brady, in their seminal work, studied these subgroups (now called Bestvina–Brady groups or Artin kernels) from a finiteness conditions viewpoint. Unlike the right-angled Artin groups the isomorphism type of Bestvina–Brady groups is not uniquely determined by the defining graph. We prove that certain finitely presented Bestvina–Brady groups can be expressed as an iterated amalgamated product. Moreover, we show that this amalgamated product can be read off from the graph defining the ambient right-angled Artin group.</p>","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218196724500012","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Right-angled Artin groups and their subgroups are of great interest because of their geometric, combinatorial and algorithmic properties. It is convenient to define these groups using finite simplicial graphs. The isomorphism type of the group is uniquely determined by the graph. Moreover, many structural properties of right-angled Artin groups can be expressed in terms of their defining graph.

In this paper, we address the question of understanding the structure of a class of subgroups of right-angled Artin groups in terms of the graph. Bestvina and Brady, in their seminal work, studied these subgroups (now called Bestvina–Brady groups or Artin kernels) from a finiteness conditions viewpoint. Unlike the right-angled Artin groups the isomorphism type of Bestvina–Brady groups is not uniquely determined by the defining graph. We prove that certain finitely presented Bestvina–Brady groups can be expressed as an iterated amalgamated product. Moreover, we show that this amalgamated product can be read off from the graph defining the ambient right-angled Artin group.

论有限呈现贝斯特维纳-布拉迪群的结构
直角阿汀群及其子群因其几何、组合和算法特性而备受关注。使用有限简单图来定义这些群非常方便。群的同构类型由图唯一决定。此外,直角阿汀群的许多结构性质都可以用它们的定义图来表达。在本文中,我们要解决的问题是用图来理解直角阿汀群的一类子群的结构。Bestvina 和 Brady 在他们的开创性著作中,从有限性条件的角度研究了这些子群(现在称为 Bestvina-Brady 群或 Artin 核)。与直角阿汀群不同,Bestvina-Brady 群的同构类型不是由定义图唯一决定的。我们证明了某些有限呈现的 Bestvina-Brady 群可以表示为迭代汞齐乘积。此外,我们还证明了这种混合积可以从定义周围直角阿尔丁群的图中读出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
66
审稿时长
6-12 weeks
期刊介绍: The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信