{"title":"Modified Gravity Model and Wormhole Solution","authors":"S. Davood Sadatian, S. Mohamad Reza Hosseini","doi":"10.1155/2024/3717418","DOIUrl":null,"url":null,"abstract":"We investigate wormhole solutions using the modified gravity model <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 24.939 12.7178\" width=\"24.939pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-103\"></use></g><g transform=\"matrix(.013,0,0,-0.013,8.352,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,12.85,0)\"><use xlink:href=\"#g113-82\"></use></g><g transform=\"matrix(.013,0,0,-0.013,21.975,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"27.0681838 -9.28833 13.015 12.7178\" width=\"13.015pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.118,0)\"><use xlink:href=\"#g113-85\"></use></g><g transform=\"matrix(.013,0,0,-0.013,35.404,0)\"><use xlink:href=\"#g113-42\"></use></g></svg></span> with viscosity and aim to find a solution for the existence of wormholes mathematically without violating the energy conditions. We show that there is no need to define a wormhole from exotic matter and analyze the equations with numerical analysis to establish weak energy conditions. In the numerical analysis, we found that the appropriate values of the parameters can maintain the weak energy conditions without the need for exotic matter. Adjusting the parameters of the model can increase or decrease the rate of positive energy density or radial and tangential pressures. According to the numerical analysis conducted in this paper, the weak energy conditions are established in the whole space if <span><svg height=\"8.98582pt\" style=\"vertical-align:-0.6370001pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 18.648 8.98582\" width=\"18.648pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.017,0)\"></path></g></svg><span></span><svg height=\"8.98582pt\" style=\"vertical-align:-0.6370001pt\" version=\"1.1\" viewbox=\"22.230183800000002 -8.34882 6.418 8.98582\" width=\"6.418pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.28,0)\"></path></g></svg></span> and <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 39.187 12.7178\" width=\"39.187pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,6.24,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,12.48,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,15.444,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,21.684,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,31.556,0)\"><use xlink:href=\"#g117-91\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"42.7691838 -9.28833 18.817 12.7178\" width=\"18.817pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,42.819,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,54.005,0)\"><use xlink:href=\"#g117-91\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"65.2181838 -9.28833 28.317 12.7178\" width=\"28.317pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,65.268,0)\"><use xlink:href=\"#g113-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,71.508,0)\"><use xlink:href=\"#g113-54\"></use></g><g transform=\"matrix(.013,0,0,-0.013,77.748,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,80.712,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,86.952,0)\"><use xlink:href=\"#g113-51\"></use></g></svg></span> or <span><svg height=\"8.98582pt\" style=\"vertical-align:-0.6370001pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 18.648 8.98582\" width=\"18.648pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-223\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.017,0)\"></path></g></svg><span></span><svg height=\"8.98582pt\" style=\"vertical-align:-0.6370001pt\" version=\"1.1\" viewbox=\"22.230183800000002 -8.34882 6.418 8.98582\" width=\"6.418pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.28,0)\"><use xlink:href=\"#g113-49\"></use></g></svg></span> and <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 18.817 12.7178\" width=\"18.817pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-224\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.186,0)\"><use xlink:href=\"#g117-92\"></use></g></svg><span></span><span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"22.399183800000003 -9.28833 28.184 12.7178\" width=\"28.184pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.449,0)\"><use xlink:href=\"#g113-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,28.689,0)\"><use xlink:href=\"#g113-54\"></use></g><g transform=\"matrix(.013,0,0,-0.013,34.929,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,37.893,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,44.133,0)\"><use xlink:href=\"#g113-51\"></use></g></svg>.</span></span> The analysis also showed that the supporting matter of the wormhole is near normal matter, indicating that the generalized <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 24.939 12.7178\" width=\"24.939pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-103\"></use></g><g transform=\"matrix(.013,0,0,-0.013,8.352,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,12.85,0)\"><use xlink:href=\"#g113-82\"></use></g><g transform=\"matrix(.013,0,0,-0.013,21.975,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"27.0681838 -9.28833 13.015 12.7178\" width=\"13.015pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.118,0)\"><use xlink:href=\"#g113-85\"></use></g><g transform=\"matrix(.013,0,0,-0.013,35.404,0)\"><use xlink:href=\"#g113-42\"></use></g></svg></span> model with viscosity has an acceptable parameter space to describe a wormhole without the need for exotic matter.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2024/3717418","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate wormhole solutions using the modified gravity model with viscosity and aim to find a solution for the existence of wormholes mathematically without violating the energy conditions. We show that there is no need to define a wormhole from exotic matter and analyze the equations with numerical analysis to establish weak energy conditions. In the numerical analysis, we found that the appropriate values of the parameters can maintain the weak energy conditions without the need for exotic matter. Adjusting the parameters of the model can increase or decrease the rate of positive energy density or radial and tangential pressures. According to the numerical analysis conducted in this paper, the weak energy conditions are established in the whole space if and or and . The analysis also showed that the supporting matter of the wormhole is near normal matter, indicating that the generalized model with viscosity has an acceptable parameter space to describe a wormhole without the need for exotic matter.
期刊介绍:
Advances in High Energy Physics publishes the results of theoretical and experimental research on the nature of, and interaction between, energy and matter. Considering both original research and focussed review articles, the journal welcomes submissions from small research groups and large consortia alike.