{"title":"Decarbonizing our environment via the promotion of biomass methanation in developing nations: a waste management tool","authors":"Chidiebere Millicent Igwebuike, Toyese Oyegoke","doi":"10.1515/pac-2023-1109","DOIUrl":null,"url":null,"abstract":"For a long time, fossil fuel has been a part of our everyday lives and has constantly led to the emission of carbon dioxide (CO<jats:sub>2</jats:sub>) into the environment. The release of methane (CH<jats:sub>4</jats:sub>) into our surroundings can be caused by the decomposition of organic wastes produced by our daily activities; CH<jats:sub>4</jats:sub> produced by human activity is responsible for at least 25 % of global warming. CH<jats:sub>4</jats:sub> is a known potent greenhouse gas that can trap about 35 times more heat than CO<jats:sub>2</jats:sub>. These greenhouse gases play a role in climate change and global warming. It, therefore, becomes important to explore measures for decarbonizing our environment. Biomethane production using our generated waste is a promising decarbonization approach with significant potential for mitigating greenhouse gas emissions. This paper overviews potential biomass methanation feedstocks and investigates several technologies, such as anaerobic digestion, combined pyrolysis and methanation, and combined gasification and methanation. SWOT analysis of waste conversion to biomethane was conducted, and important points related to the scaling-up of biomethane production processes were outlined. Also, insights into prospects for promoting biomass methanation deployment were provided. In conclusion, biomass methanation has great potential for producing sustainable energy. Hence, collaboration between industrialists, researchers, government agencies, and stakeholders including an understanding of the financial investments, return on investments, or potential subsidies and incentives could enhance the practicality of the proposed solution. Research and development should be continuously carried out as they are necessary to scale up and promote the technology. Also, there should be technical training for stakeholders as it is essential for the smooth development of the sector.","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/pac-2023-1109","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
For a long time, fossil fuel has been a part of our everyday lives and has constantly led to the emission of carbon dioxide (CO2) into the environment. The release of methane (CH4) into our surroundings can be caused by the decomposition of organic wastes produced by our daily activities; CH4 produced by human activity is responsible for at least 25 % of global warming. CH4 is a known potent greenhouse gas that can trap about 35 times more heat than CO2. These greenhouse gases play a role in climate change and global warming. It, therefore, becomes important to explore measures for decarbonizing our environment. Biomethane production using our generated waste is a promising decarbonization approach with significant potential for mitigating greenhouse gas emissions. This paper overviews potential biomass methanation feedstocks and investigates several technologies, such as anaerobic digestion, combined pyrolysis and methanation, and combined gasification and methanation. SWOT analysis of waste conversion to biomethane was conducted, and important points related to the scaling-up of biomethane production processes were outlined. Also, insights into prospects for promoting biomass methanation deployment were provided. In conclusion, biomass methanation has great potential for producing sustainable energy. Hence, collaboration between industrialists, researchers, government agencies, and stakeholders including an understanding of the financial investments, return on investments, or potential subsidies and incentives could enhance the practicality of the proposed solution. Research and development should be continuously carried out as they are necessary to scale up and promote the technology. Also, there should be technical training for stakeholders as it is essential for the smooth development of the sector.
期刊介绍:
Pure and Applied Chemistry is the official monthly Journal of IUPAC, with responsibility for publishing works arising from those international scientific events and projects that are sponsored and undertaken by the Union. The policy is to publish highly topical and credible works at the forefront of all aspects of pure and applied chemistry, and the attendant goal is to promote widespread acceptance of the Journal as an authoritative and indispensable holding in academic and institutional libraries.