Weights for compact connected Lie groups

Pub Date : 2024-03-09 DOI:10.1007/s00229-024-01538-2
Radha Kessar, Gunter Malle, Jason Semeraro
{"title":"Weights for compact connected Lie groups","authors":"Radha Kessar, Gunter Malle, Jason Semeraro","doi":"10.1007/s00229-024-01538-2","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\ell \\)</span> be a prime. If <span>\\(\\textbf{G}\\)</span> is a compact connected Lie group, or a connected reductive algebraic group in characteristic different from <span>\\(\\ell \\)</span>, and <span>\\(\\ell \\)</span> is a good prime for <span>\\(\\textbf{G}\\)</span>, we show that the number of weights of the <span>\\(\\ell \\)</span>-fusion system of <span>\\(\\textbf{G}\\)</span> is equal to the number of irreducible characters of its Weyl group. The proof relies on the classification of <span>\\(\\ell \\)</span>-stubborn subgroups in compact Lie groups.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01538-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\ell \) be a prime. If \(\textbf{G}\) is a compact connected Lie group, or a connected reductive algebraic group in characteristic different from \(\ell \), and \(\ell \) is a good prime for \(\textbf{G}\), we show that the number of weights of the \(\ell \)-fusion system of \(\textbf{G}\) is equal to the number of irreducible characters of its Weyl group. The proof relies on the classification of \(\ell \)-stubborn subgroups in compact Lie groups.

分享
查看原文
紧凑相连李群的权重
让 \(\ell \) 是一个质数。如果\(\textbf{G}\)是一个紧凑连通的李群,或者是一个与\(\ell \)不同特征的连通还原代数群,并且\(\ell \)是\(\textbf{G}\)的一个好素数,那么我们证明\(\textbf{G}\)的\(\ell \)-融合系统的权数等于它的韦尔群的不可还原字符数。这个证明依赖于紧凑李群中(\ell \)-固执子群的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信