Lycorine hydrochloride interferes with energy metabolism to inhibit chemoresistant glioblastoma multiforme cell growth through suppressing PDK3.

IF 3.5 2区 生物学 Q3 CELL BIOLOGY
Molecular and Cellular Biochemistry Pub Date : 2025-01-01 Epub Date: 2024-03-11 DOI:10.1007/s11010-024-04945-x
Qingsheng Dong, Wanxiang Niu, Maolin Mu, Chengkun Ye, Pengfei Wu, Shanshan Hu, Chaoshi Niu
{"title":"Lycorine hydrochloride interferes with energy metabolism to inhibit chemoresistant glioblastoma multiforme cell growth through suppressing PDK3.","authors":"Qingsheng Dong, Wanxiang Niu, Maolin Mu, Chengkun Ye, Pengfei Wu, Shanshan Hu, Chaoshi Niu","doi":"10.1007/s11010-024-04945-x","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is the highest grade of glioma. Tumours, including GBM, possess reprogrammed metabolism, such as altered aerobic glycolysis and aberrant energy production. Lycorine hydrochloride (LH) was extracted from the bulb of Lycoris radiata. The previous study indicated that LH exerts antiviral, anti-inflammatory and antitumour effects. However, the effect of LH on GBM and the underlying molecular mechanism remain unclear. Our study revealed that LH restrained chemoresistant GBM cells growth by inhibiting PDK3 expression in vitro and in vivo. Functionally, LH inhibited the proliferation and invasive capacity of chemoresistant GBM cells in dose-dependent manner. Metabolomics and cellular energy analyses showed that LH decreased extracellular acidification rates while increased oxidative respiration and ROS levels. Mechanistically, LH inhibits the growth of GBM chemoresistant cells by regulating the expression of apoptosis-related proteins, while overexpression of of PDK3 can reverse the antitumor effect of LH. In conclusion, our study revealed that LH could reprogramme cell energy metabolism, including aerobic glycolysis suppression and oxidative phosphorylation hyperactivation by inhibiting PDK3. PDK3 may be a candidate therapeutic target for chemoresistant GBM treatment with LH.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"355-369"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-04945-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma multiforme (GBM) is the highest grade of glioma. Tumours, including GBM, possess reprogrammed metabolism, such as altered aerobic glycolysis and aberrant energy production. Lycorine hydrochloride (LH) was extracted from the bulb of Lycoris radiata. The previous study indicated that LH exerts antiviral, anti-inflammatory and antitumour effects. However, the effect of LH on GBM and the underlying molecular mechanism remain unclear. Our study revealed that LH restrained chemoresistant GBM cells growth by inhibiting PDK3 expression in vitro and in vivo. Functionally, LH inhibited the proliferation and invasive capacity of chemoresistant GBM cells in dose-dependent manner. Metabolomics and cellular energy analyses showed that LH decreased extracellular acidification rates while increased oxidative respiration and ROS levels. Mechanistically, LH inhibits the growth of GBM chemoresistant cells by regulating the expression of apoptosis-related proteins, while overexpression of of PDK3 can reverse the antitumor effect of LH. In conclusion, our study revealed that LH could reprogramme cell energy metabolism, including aerobic glycolysis suppression and oxidative phosphorylation hyperactivation by inhibiting PDK3. PDK3 may be a candidate therapeutic target for chemoresistant GBM treatment with LH.

Abstract Image

盐酸番茄红素通过抑制 PDK3 干扰能量代谢,从而抑制具有化疗耐药性的多形性胶质母细胞瘤细胞的生长。
多形性胶质母细胞瘤(GBM)是胶质瘤中的最高级别。包括 GBM 在内的肿瘤具有重新编程的新陈代谢,如改变的有氧糖酵解和异常的能量产生。盐酸番荔枝碱(LH)是从番荔枝鳞茎中提取的。先前的研究表明,LH 具有抗病毒、抗炎和抗肿瘤的作用。然而,LH 对 GBM 的作用及其分子机制仍不清楚。我们的研究发现,LH 可通过抑制 PDK3 在体外和体内的表达来抑制化疗耐药 GBM 细胞的生长。在功能上,LH以剂量依赖的方式抑制了化疗耐药GBM细胞的增殖和侵袭能力。代谢组学和细胞能量分析表明,LH降低了细胞外酸化率,同时提高了氧化呼吸和ROS水平。从机理上讲,LH通过调节凋亡相关蛋白的表达来抑制GBM化疗耐药细胞的生长,而过表达PDK3则会逆转LH的抗肿瘤作用。总之,我们的研究揭示了LH可通过抑制PDK3重编程细胞能量代谢,包括有氧糖酵解抑制和氧化磷酸化亢进。PDK3可能是LH治疗化疗耐药GBM的候选治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信