Measure transfer and S-adic developments for subshifts

Pub Date : 2024-03-11 DOI:10.1017/etds.2024.19
NICOLAS BÉDARIDE, ARNAUD HILION, MARTIN LUSTIG
{"title":"Measure transfer and S-adic developments for subshifts","authors":"NICOLAS BÉDARIDE, ARNAUD HILION, MARTIN LUSTIG","doi":"10.1017/etds.2024.19","DOIUrl":null,"url":null,"abstract":"<p>Based on previous work of the authors, to any <span>S</span>-adic development of a subshift <span>X</span> a ‘directive sequence’ of commutative diagrams is associated, which consists at every level <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$n \\geq 0$</span></span></img></span></span> of the measure cone and the letter frequency cone of the level subshift <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$X_n$</span></span></img></span></span> associated canonically to the given <span>S</span>-adic development. The issuing rich picture enables one to deduce results about <span>X</span> with unexpected directness. For instance, we exhibit a large class of minimal subshifts with entropy zero that all have infinitely many ergodic probability measures. As a side result, we also exhibit, for any integer <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$d \\geq 2$</span></span></img></span></span>, an <span>S</span>-adic development of a minimal, aperiodic, uniquely ergodic subshift <span>X</span>, where all level alphabets <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal A_n$</span></span></img></span></span> have cardinality <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$d,$</span></span></img></span></span> while none of the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$d-2$</span></span></img></span></span> bottom level morphisms is recognizable in its level subshift <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$X_n \\subseteq \\mathcal A_n^{\\mathbb {Z}}$</span></span></img></span></span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on previous work of the authors, to any S-adic development of a subshift X a ‘directive sequence’ of commutative diagrams is associated, which consists at every level Abstract Image$n \geq 0$ of the measure cone and the letter frequency cone of the level subshift Abstract Image$X_n$ associated canonically to the given S-adic development. The issuing rich picture enables one to deduce results about X with unexpected directness. For instance, we exhibit a large class of minimal subshifts with entropy zero that all have infinitely many ergodic probability measures. As a side result, we also exhibit, for any integer Abstract Image$d \geq 2$, an S-adic development of a minimal, aperiodic, uniquely ergodic subshift X, where all level alphabets Abstract Image$\mathcal A_n$ have cardinality Abstract Image$d,$ while none of the Abstract Image$d-2$ bottom level morphisms is recognizable in its level subshift Abstract Image$X_n \subseteq \mathcal A_n^{\mathbb {Z}}$.

分享
查看原文
子转移的测量转移和 S-adic 发展
基于作者之前的工作,任何子移位 X 的 S-adic 发展都与交换图的 "指令序列 "相关联,它在每一级 $n \geq 0$ 都由与给定 S-adic 发展相关联的级子移位 $X_n$ 的度量锥和字母频率锥组成。这一丰富的图景使我们能够以意想不到的直接性推导出关于 X 的结果。例如,我们展示了一大类熵为零的最小子移,它们都有无限多的遍历概率度量。作为一个附带结果,我们还展示了对于任意整数 $d \geq 2$,一个最小的、非周期性的、唯一遍历子移位 X 的 S-adic 发展,其中所有层级字母 $mathcal A_n$ 都有 cardinality $d,$ 而在其层级子移位 $X_n \subseteq \mathcal A_n^{mathbb {Z}}$ 中,没有一个 $d-2$ 底层变形是可识别的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信