{"title":"Algorithms with Gradient Clipping for Stochastic Optimization with Heavy-Tailed Noise","authors":"M. Danilova","doi":"10.1134/S1064562423701144","DOIUrl":null,"url":null,"abstract":"<p>This article provides a survey of the results of several research studies [12–14, 26], in which open questions related to the high-probability convergence analysis of stochastic first-order optimization methods under mild assumptions on the noise were gradually addressed. In the beginning, we introduce the concept of gradient clipping, which plays a pivotal role in the development of stochastic methods for successful operation in the case of heavy-tailed distributions. Next, we examine the importance of obtaining the high-probability convergence guarantees and their connection with in-expectation convergence guarantees. The concluding sections of the article are dedicated to presenting the primary findings related to minimization problems and the results of numerical experiments.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423701144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article provides a survey of the results of several research studies [12–14, 26], in which open questions related to the high-probability convergence analysis of stochastic first-order optimization methods under mild assumptions on the noise were gradually addressed. In the beginning, we introduce the concept of gradient clipping, which plays a pivotal role in the development of stochastic methods for successful operation in the case of heavy-tailed distributions. Next, we examine the importance of obtaining the high-probability convergence guarantees and their connection with in-expectation convergence guarantees. The concluding sections of the article are dedicated to presenting the primary findings related to minimization problems and the results of numerical experiments.