Operator Estimates for Problems in Domains with Singularly Curved Boundary: Dirichlet and Neumann Conditions

Pub Date : 2024-03-11 DOI:10.1134/S1064562424701758
D. I. Borisov, R. R. Suleimanov
{"title":"Operator Estimates for Problems in Domains with Singularly Curved Boundary: Dirichlet and Neumann Conditions","authors":"D. I. Borisov,&nbsp;R. R. Suleimanov","doi":"10.1134/S1064562424701758","DOIUrl":null,"url":null,"abstract":"<p>We consider a system of second-order semilinear elliptic equations in a multidimensional domain with an arbitrarily curved boundary contained in a narrow layer along the unperturbed boundary. The Dirichlet or Neumann condition is imposed on the curved boundary. In the case of the Neumann condition, rather natural and weak conditions are additionally imposed on the structure of the curving. Under these conditions, we show that the homogenized problem is one for the same system of equations in the unperturbed problem with a boundary condition of the same kind as on the perturbed boundary. The main result is operator <span>\\(W_{2}^{1}\\)</span>- and <i>L</i><sub>2</sub>- estimates.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424701758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a system of second-order semilinear elliptic equations in a multidimensional domain with an arbitrarily curved boundary contained in a narrow layer along the unperturbed boundary. The Dirichlet or Neumann condition is imposed on the curved boundary. In the case of the Neumann condition, rather natural and weak conditions are additionally imposed on the structure of the curving. Under these conditions, we show that the homogenized problem is one for the same system of equations in the unperturbed problem with a boundary condition of the same kind as on the perturbed boundary. The main result is operator \(W_{2}^{1}\)- and L2- estimates.

Abstract Image

分享
查看原文
具有奇异曲线边界的域中问题的算子估计: 迪里希特条件和诺依曼条件
摘要 我们考虑了多维域中的二阶半线性椭圆方程系统,该多维域具有任意弯曲的边界,沿未扰动边界包含一个狭窄层。在弯曲边界上施加了 Dirichlet 或 Neumann 条件。在诺依曼条件的情况下,还对弯曲的结构施加了相当自然和微弱的条件。在这些条件下,我们证明了同质化问题是未扰动问题中相同方程组的问题,其边界条件与扰动边界上的边界条件相同。主要结果是算子 \(W_{2}^{1}\) - 和 L2- 估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信