Neural Networks for Coordination Analysis

Pub Date : 2024-03-11 DOI:10.1134/S1064562423701181
A. I. Predelina, S. Yu. Dulikov, A. M. Alekseev
{"title":"Neural Networks for Coordination Analysis","authors":"A. I. Predelina,&nbsp;S. Yu. Dulikov,&nbsp;A. M. Alekseev","doi":"10.1134/S1064562423701181","DOIUrl":null,"url":null,"abstract":"<p>This paper is dedicated to the development of a novel method for coordination analysis (CA) in English using the neural (deep learning) methods. An efficient solution for the task allows identifying potentially valuable links and relationships between specific parts of a sentence, making the extraction of coordinate structures an important text preprocessing tool. In this study, a number of ideas for approaching the task within the framework of one-stage detectors were tested. The achieved results are comparable in quality to the current most advanced CA methods while allowing to process more than three-fold more sentences per unit time.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423701181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is dedicated to the development of a novel method for coordination analysis (CA) in English using the neural (deep learning) methods. An efficient solution for the task allows identifying potentially valuable links and relationships between specific parts of a sentence, making the extraction of coordinate structures an important text preprocessing tool. In this study, a number of ideas for approaching the task within the framework of one-stage detectors were tested. The achieved results are comparable in quality to the current most advanced CA methods while allowing to process more than three-fold more sentences per unit time.

Abstract Image

分享
查看原文
用于协调分析的神经网络
摘要 本文致力于开发一种使用神经(深度学习)方法进行英语协调分析(CA)的新方法。对这一任务的有效解决方案可以识别句子特定部分之间潜在的有价值的联系和关系,从而使提取坐标结构成为重要的文本预处理工具。在本研究中,测试了在单级检测器框架内处理该任务的若干想法。所取得的结果在质量上可与目前最先进的 CA 方法相媲美,同时单位时间内可处理的句子数量增加了三倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信