Two q-Operational Equations and Hahn Polynomials

IF 0.7 4区 数学 Q2 MATHEMATICS
{"title":"Two q-Operational Equations and Hahn Polynomials","authors":"","doi":"10.1007/s11785-024-01496-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Motivated by Liu’s (Sci China Math 66:1199–1216, 2023) recent work. This article reveals the essential features of Hahn polynomials by presenting a new <em>q</em>-exponential operator, that is <span> <span>$$\\begin{aligned} \\exp _q(t\\Delta _{x,a})f(x)=\\frac{(axt;q)_{\\infty }}{(xt;q)_{\\infty }} \\sum _{n=0}^{\\infty }\\frac{t^n}{(q;q)_n} f(q^n x) \\end{aligned}$$</span> </span>with <span> <span>\\(\\Delta _{x,a}=x (1-a)\\eta _a+\\eta _x\\)</span> </span> and <span> <span>\\(\\eta _x \\{f(x) \\}=f(qx)\\)</span> </span>. Letting <span> <span>\\(f(x) \\equiv 1\\)</span> </span> and the above operator equation immediately becomes the generating function of Hahn polynomials. These lead us to use a systematic method for studying identities involving Hahn polynomials. As applications, we use the method of the <em>q</em>-exponential operator to prove some new <em>q</em>-identities, including <em>q</em>-Nielsen’s formulas and Carlitz’s extension for the Hahn polynomials, etc. Moreover, a generalization of <em>q</em>-Gauss summation is given, too. </p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"68 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01496-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by Liu’s (Sci China Math 66:1199–1216, 2023) recent work. This article reveals the essential features of Hahn polynomials by presenting a new q-exponential operator, that is $$\begin{aligned} \exp _q(t\Delta _{x,a})f(x)=\frac{(axt;q)_{\infty }}{(xt;q)_{\infty }} \sum _{n=0}^{\infty }\frac{t^n}{(q;q)_n} f(q^n x) \end{aligned}$$ with \(\Delta _{x,a}=x (1-a)\eta _a+\eta _x\) and \(\eta _x \{f(x) \}=f(qx)\) . Letting \(f(x) \equiv 1\) and the above operator equation immediately becomes the generating function of Hahn polynomials. These lead us to use a systematic method for studying identities involving Hahn polynomials. As applications, we use the method of the q-exponential operator to prove some new q-identities, including q-Nielsen’s formulas and Carlitz’s extension for the Hahn polynomials, etc. Moreover, a generalization of q-Gauss summation is given, too.

两个 q 运算方程和哈恩多项式
摘要 受刘晓明(Sci China Math 66:1199-1216, 2023)近期工作的启发。本文通过提出一个新的 q 指数算子来揭示哈恩多项式的本质特征,即 $$\begin{aligned}\exp _q(t\Delta _{x,a})f(x)=\frac{(axt;q)_{\infty }}{(xt;q)_{\infty }}\sum _{n=0}^{infty }\frac{t^n}{(q;q)_n} f(q^n x) \end{aligned}$$ with \(\Delta _{x,a}=x (1-a)\eta _a+\eta _x\)和 \(\eta _x \{f(x) \}=f(qx)\) .让 \(f(x) \equiv 1\) 和上述算子方程立即成为哈恩多项式的生成函数。这些都促使我们用一种系统的方法来研究涉及哈恩多项式的等式。作为应用,我们用 q 指数算子的方法证明了一些新的 q 常项,包括 q-Nielsen 公式和 Carlitz 对哈恩多项式的扩展等。此外,还给出了 q 高斯求和的广义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信