{"title":"Reaction-Diffusion Systems with Nonlinear Sources of Different Intensities in the Case of Multiple Root without Quasimonotonicity Condition","authors":"R. E. Simakov","doi":"10.3103/S0027134923060164","DOIUrl":null,"url":null,"abstract":"<p>The boundary value problem for a singularly perturbed system of two second-order ordinary differential equations with different powers of a small parameter at the second derivatives is considered without requiring the right-hand sides to be quasimonotonic. The specific feature of the problem is that one of the two equations of the degenerate system has a double root. It is proven that for sufficiently small values of a small parameter, the problem has a boundary layer type solution. A condition has been obtained that replaces the quasimonotonicity condition and expands the class of problems to which the results of the work are applicable.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"78 6","pages":"751 - 756"},"PeriodicalIF":0.4000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0027134923060164","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The boundary value problem for a singularly perturbed system of two second-order ordinary differential equations with different powers of a small parameter at the second derivatives is considered without requiring the right-hand sides to be quasimonotonic. The specific feature of the problem is that one of the two equations of the degenerate system has a double root. It is proven that for sufficiently small values of a small parameter, the problem has a boundary layer type solution. A condition has been obtained that replaces the quasimonotonicity condition and expands the class of problems to which the results of the work are applicable.
期刊介绍:
Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.