Two-Stage Vernier-Based Time-to-Digital Converter with Enhanced Resolution and Digital Error Correction

IF 1.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Mostafa Fathi, Samad Sheikhaei
{"title":"Two-Stage Vernier-Based Time-to-Digital Converter with Enhanced Resolution and Digital Error Correction","authors":"Mostafa Fathi, Samad Sheikhaei","doi":"10.1007/s40998-024-00707-z","DOIUrl":null,"url":null,"abstract":"<p>This article proposes a two-stage time-to-digital converter with a novel method for enhancing resolution and using digital error correction called time-to-digital converter with enhanced resolution (TDC-ER). The proposed TDC is composed of two Vernier TDCs and operating in two stages. The first stage uses a normal Vernier TDC with a 512 ps range, and the second stage employs a 2D Vernier TDC with a new delay element. The second stage can achieve a fine resolution of 2 ps. This study presents a novel idea for boosting the resolution by analyzing D flip-flop (DFF) outputs in the metastability state. In the end, it is shown that this method can achieve a 1 ps resolution. The TDC-ER offers the benefits of new digital error correction, reducing the connection error between two stages and increasing linearity. A new calibration idea is presented in this work. This circuit is designed and simulated using a 65-nm standard CMOS technology, and the simulation result demonstrates a 1.56 ps effective resolution and a 9-bit range. It operates at 250 MS/s while consuming about 0.5 mW power from a 1.2-V supply.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":"71 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-024-00707-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes a two-stage time-to-digital converter with a novel method for enhancing resolution and using digital error correction called time-to-digital converter with enhanced resolution (TDC-ER). The proposed TDC is composed of two Vernier TDCs and operating in two stages. The first stage uses a normal Vernier TDC with a 512 ps range, and the second stage employs a 2D Vernier TDC with a new delay element. The second stage can achieve a fine resolution of 2 ps. This study presents a novel idea for boosting the resolution by analyzing D flip-flop (DFF) outputs in the metastability state. In the end, it is shown that this method can achieve a 1 ps resolution. The TDC-ER offers the benefits of new digital error correction, reducing the connection error between two stages and increasing linearity. A new calibration idea is presented in this work. This circuit is designed and simulated using a 65-nm standard CMOS technology, and the simulation result demonstrates a 1.56 ps effective resolution and a 9-bit range. It operates at 250 MS/s while consuming about 0.5 mW power from a 1.2-V supply.

Abstract Image

基于游标的两级时数转换器,具有更高分辨率和数字纠错功能
本文提出了一种两级时间数字转换器,该转换器采用了一种新方法来提高分辨率并使用数字纠错,称为具有增强分辨率的时间数字转换器(TDC-ER)。拟议的 TDC 由两个 Vernier TDC 组成,分两级运行。第一级使用 512 ps 范围的普通 Vernier TDC,第二级使用带有新延迟元件的 2D Vernier TDC。第二级可实现 2 ps 的精细分辨率。本研究提出了一种新的思路,即通过分析瞬变状态下的 D 触发器 (DFF) 输出来提高分辨率。结果表明,这种方法可以实现 1 ps 的分辨率。TDC-ER 具有新数字纠错、减少两级之间的连接误差和提高线性度的优点。这项工作提出了一种新的校准思路。该电路采用 65 纳米标准 CMOS 技术进行设计和仿真,仿真结果表明其有效分辨率为 1.56 ps,量程为 9 位。它的工作速度为 250 MS/s,而 1.2 V 电源的功耗约为 0.5 mW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
4.20%
发文量
93
审稿时长
>12 weeks
期刊介绍: Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities. The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well as applications of established techniques to new domains in various electical engineering disciplines such as: Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers, organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信