{"title":"Assessing the Impact of Urban Environments on Mental Health and Perception Using Deep Learning: A Review and Text Mining Analysis","authors":"Musab Wedyan, Fatemeh Saeidi-Rizi","doi":"10.1007/s11524-024-00830-6","DOIUrl":null,"url":null,"abstract":"<p>Understanding how outdoor environments affect mental health outcomes is vital in today’s fast-paced and urbanized society. Recently, advancements in data-gathering technologies and deep learning have facilitated the study of the relationship between the outdoor environment and human perception. In a systematic review, we investigate how deep learning techniques can shed light on a better understanding of the influence of outdoor environments on human perceptions and emotions, with an emphasis on mental health outcomes. We have systematically reviewed 40 articles published in SCOPUS and the Web of Science databases which were the published papers between 2016 and 2023. The study presents and utilizes a novel topic modeling method to identify coherent keywords. By extracting the top words of each research topic, and identifying the current topics, we indicate that current studies are classified into three areas. The first topic was “Urban Perception and Environmental Factors” where the studies aimed to evaluate perceptions and mental health outcomes. Within this topic, the studies were divided based on human emotions, mood, stress, and urban features impacts. The second topic was titled “Data Analysis and Urban Imagery in Modeling” which focused on refining deep learning techniques, data collection methods, and participants’ variability to understand human perceptions more accurately. The last topic was named “Greenery and visual exposure in urban spaces” which focused on the impact of the amount and the exposure of green features on mental health and perceptions. Upon reviewing the papers, this study provides a guide for subsequent research to enhance the view of using deep learning techniques to understand how urban environments influence mental health. It also provides various suggestions that should be taken into account when planning outdoor spaces.</p>","PeriodicalId":17506,"journal":{"name":"Journal of Urban Health","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Urban Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11524-024-00830-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding how outdoor environments affect mental health outcomes is vital in today’s fast-paced and urbanized society. Recently, advancements in data-gathering technologies and deep learning have facilitated the study of the relationship between the outdoor environment and human perception. In a systematic review, we investigate how deep learning techniques can shed light on a better understanding of the influence of outdoor environments on human perceptions and emotions, with an emphasis on mental health outcomes. We have systematically reviewed 40 articles published in SCOPUS and the Web of Science databases which were the published papers between 2016 and 2023. The study presents and utilizes a novel topic modeling method to identify coherent keywords. By extracting the top words of each research topic, and identifying the current topics, we indicate that current studies are classified into three areas. The first topic was “Urban Perception and Environmental Factors” where the studies aimed to evaluate perceptions and mental health outcomes. Within this topic, the studies were divided based on human emotions, mood, stress, and urban features impacts. The second topic was titled “Data Analysis and Urban Imagery in Modeling” which focused on refining deep learning techniques, data collection methods, and participants’ variability to understand human perceptions more accurately. The last topic was named “Greenery and visual exposure in urban spaces” which focused on the impact of the amount and the exposure of green features on mental health and perceptions. Upon reviewing the papers, this study provides a guide for subsequent research to enhance the view of using deep learning techniques to understand how urban environments influence mental health. It also provides various suggestions that should be taken into account when planning outdoor spaces.