{"title":"A radial integration displacement discontinuity method with discontinuous isoparametric elements for 3D fracture simulations","authors":"Ke Li, Fei Wang","doi":"10.1007/s10665-024-10335-5","DOIUrl":null,"url":null,"abstract":"<p>To improve the accuracy of displacement discontinuity method and enhance its adaptivity, a general-purpose 3D displacement discontinuity method with both linear and quadratic isoparametric elements has been developed to model engineering problems where discontinuous surfaces such as cracks are involved. Linear and quadratic isoparametric elements have linear and quadratic distributions of displacement discontinuity values, respectively. Both of them belong to discontinuous elements, in which the geometry shape functions are different from the interpolation shape functions. The new general formulation, based on the boundary integral functions, is given for displacement discontinuity problems with arbitrary boundary shapes. This formulation contains hypersingular integrals which can be evaluated in the sense of Hadamard principal value. The radial integration technique is applied to perform these singular integrals with sufficiently high accuracy. Various numerical examples including stress intensity factor calculation are given to validate the accuracy of the proposed approach. Compared with the constant displacement discontinuity element, the present isoparametric displacement discontinuity elements show better accuracy.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":"91 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10335-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the accuracy of displacement discontinuity method and enhance its adaptivity, a general-purpose 3D displacement discontinuity method with both linear and quadratic isoparametric elements has been developed to model engineering problems where discontinuous surfaces such as cracks are involved. Linear and quadratic isoparametric elements have linear and quadratic distributions of displacement discontinuity values, respectively. Both of them belong to discontinuous elements, in which the geometry shape functions are different from the interpolation shape functions. The new general formulation, based on the boundary integral functions, is given for displacement discontinuity problems with arbitrary boundary shapes. This formulation contains hypersingular integrals which can be evaluated in the sense of Hadamard principal value. The radial integration technique is applied to perform these singular integrals with sufficiently high accuracy. Various numerical examples including stress intensity factor calculation are given to validate the accuracy of the proposed approach. Compared with the constant displacement discontinuity element, the present isoparametric displacement discontinuity elements show better accuracy.
期刊介绍:
The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following:
• Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods.
• Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas.
The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly.
Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.