Telescopers for differential forms with one parameter

Shaoshi Chen, Ruyong Feng, Ziming Li, Michael F. Singer, Stephen M. Watt
{"title":"Telescopers for differential forms with one parameter","authors":"Shaoshi Chen, Ruyong Feng, Ziming Li, Michael F. Singer, Stephen M. Watt","doi":"10.1007/s00029-024-00926-6","DOIUrl":null,"url":null,"abstract":"<p>Telescopers for a function are linear differential (resp. difference) operators annihilating the definite integral (resp. definite sum) of this function. They play a key role in Wilf–Zeilberger theory and algorithms for computing them have been extensively studied in the past 30 years. In this paper, we introduce the notion of telescopers for differential forms with <i>D</i>-finite function coefficients. These telescopers appear in several areas of mathematics, for instance parametrized differential Galois theory and mirror symmetry. We give a sufficient and necessary condition for the existence of telescopers for a differential form and describe a method to compute them if they exist. Algorithms for verifying this condition are also given.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00926-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Telescopers for a function are linear differential (resp. difference) operators annihilating the definite integral (resp. definite sum) of this function. They play a key role in Wilf–Zeilberger theory and algorithms for computing them have been extensively studied in the past 30 years. In this paper, we introduce the notion of telescopers for differential forms with D-finite function coefficients. These telescopers appear in several areas of mathematics, for instance parametrized differential Galois theory and mirror symmetry. We give a sufficient and necessary condition for the existence of telescopers for a differential form and describe a method to compute them if they exist. Algorithms for verifying this condition are also given.

单参数微分形式的望远镜
函数的望远镜是湮没该函数定积分(或定和)的线性微分(或差分)算子。它们在 Wilf-Zeilberger 理论中起着关键作用,在过去 30 年里,人们对计算它们的算法进行了广泛研究。在本文中,我们介绍了具有 D-有限函数系数的微分形式的望远镜的概念。这些望远镜出现在多个数学领域,例如参数化微分伽罗瓦理论和镜像对称性。我们给出了微分形式存在望远镜的充分必要条件,并描述了计算望远镜的方法。我们还给出了验证这一条件的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信