When the Fourier transform is one loop exact?

Maxim Kontsevich, Alexander Odesskii
{"title":"When the Fourier transform is one loop exact?","authors":"Maxim Kontsevich, Alexander Odesskii","doi":"10.1007/s00029-024-00920-y","DOIUrl":null,"url":null,"abstract":"<p>We investigate the question: for which functions <span>\\(f(x_1,\\ldots ,x_n),~g(x_1,\\ldots ,x_n)\\)</span> the asymptotic expansion of the integral <span>\\(\\int g(x_1,\\ldots ,x_n) e^{\\frac{f(x_1,\\ldots ,x_n)+x_1y_1+\\dots +x_ny_n}{\\hbar }}dx_1\\ldots dx_n\\)</span> consists only of the first term. We reveal a hidden projective invariance of the problem which establishes its relation with geometry of projective hypersurfaces of the form <span>\\(\\{(1:x_1:\\ldots :x_n:f)\\}\\)</span>. We also construct various examples, in particular we prove that Kummer surface in <span>\\({\\mathbb {P}}^3\\)</span> gives a solution to our problem.\n</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00920-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the question: for which functions \(f(x_1,\ldots ,x_n),~g(x_1,\ldots ,x_n)\) the asymptotic expansion of the integral \(\int g(x_1,\ldots ,x_n) e^{\frac{f(x_1,\ldots ,x_n)+x_1y_1+\dots +x_ny_n}{\hbar }}dx_1\ldots dx_n\) consists only of the first term. We reveal a hidden projective invariance of the problem which establishes its relation with geometry of projective hypersurfaces of the form \(\{(1:x_1:\ldots :x_n:f)\}\). We also construct various examples, in particular we prove that Kummer surface in \({\mathbb {P}}^3\) gives a solution to our problem.

Abstract Image

当傅立叶变换为单圈精确变换时?
我们研究的问题是对于哪些函数(f(x_1,\ldots ,x_n),~g(x_1,\ldots ,x_n)),积分(int g(x_1、\e^{frac{f(x_1,\ldots ,x_n)+x_1y_1+\dots +x_ny_n}\{hbar }}dx_1\ldots dx_n\) 只包含第一项。我们揭示了问题的一个隐藏的投影不变性,它建立了问题与投影超曲面几何的关系,其形式为\(\{(1:x_1:\ldots :x_n:f)\}\).我们还构造了各种例子,特别是我们证明了库默曲面在 \({\mathbb {P}}^3\) 中给出了问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信