{"title":"WEIERSTRASS ZETA FUNCTIONS AND p-ADIC LINEAR RELATIONS","authors":"DUC HIEP PHAM","doi":"10.1017/s0004972724000091","DOIUrl":null,"url":null,"abstract":"<p>We discuss the <span>p</span>-adic Weierstrass zeta functions associated with elliptic curves defined over the field of algebraic numbers and linear relations for their values in the <span>p</span>-adic domain. These results are extensions of the <span>p</span>-adic analogues of results given by Wüstholz in the complex domain [see A. Baker and G. Wüstholz, <span>Logarithmic Forms and Diophantine Geometry</span>, New Mathematical Monographs, 9 (Cambridge University Press, Cambridge, 2007), Theorem 6.3] and also generalise a result of Bertrand to higher dimensions [‘Sous-groupes à un paramètre <span>p</span>-adique de variétés de groupe’, <span>Invent. Math.</span> <span>40</span>(2) (1977), 171–193].</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We discuss the p-adic Weierstrass zeta functions associated with elliptic curves defined over the field of algebraic numbers and linear relations for their values in the p-adic domain. These results are extensions of the p-adic analogues of results given by Wüstholz in the complex domain [see A. Baker and G. Wüstholz, Logarithmic Forms and Diophantine Geometry, New Mathematical Monographs, 9 (Cambridge University Press, Cambridge, 2007), Theorem 6.3] and also generalise a result of Bertrand to higher dimensions [‘Sous-groupes à un paramètre p-adique de variétés de groupe’, Invent. Math.40(2) (1977), 171–193].
我们讨论与代数数域上定义的椭圆曲线相关的 p-adic Weierstrass zeta 函数,以及它们在 p-adic 域中的值的线性关系。这些结果是 Wüstholz 在复数域给出的 p-adic 类似结果的扩展[见 A. Baker and G. Wüstholz, Logarithmic Forms and Diophantine Geometry, New Mathematical Monographs, 9 (Cambridge University Press, Cambridge, 2007), Theorem 6.3],同时也将 Bertrand 的一个结果推广到更高维度['Sous-groupes à un paramètre p-adique de variétés de groupe', Invent.Math.40(2) (1977), 171-193].