A Clique-Based Separator for Intersection Graphs of Geodesic Disks in $\mathbb{R}^2$

Boris Aronov, Mark de Berg, Leonidas Theocharous
{"title":"A Clique-Based Separator for Intersection Graphs of Geodesic Disks in $\\mathbb{R}^2$","authors":"Boris Aronov, Mark de Berg, Leonidas Theocharous","doi":"arxiv-2403.04905","DOIUrl":null,"url":null,"abstract":"Let $d$ be a (well-behaved) shortest-path metric defined on a path-connected\nsubset of $\\mathbb{R}^2$ and let $\\mathcal{D}=\\{D_1,\\ldots,D_n\\}$ be a set of\ngeodesic disks with respect to the metric $d$. We prove that\n$\\mathcal{G}^{\\times}(\\mathcal{D})$, the intersection graph of the disks in\n$\\mathcal{D}$, has a clique-based separator consisting of\n$O(n^{3/4+\\varepsilon})$ cliques. This significantly extends the class of\nobjects whose intersection graphs have small clique-based separators. Our clique-based separator yields an algorithm for $q$-COLORING that runs in\ntime $2^{O(n^{3/4+\\varepsilon})}$, assuming the boundaries of the disks $D_i$\ncan be computed in polynomial time. We also use our clique-based separator to\nobtain a simple, efficient, and almost exact distance oracle for intersection\ngraphs of geodesic disks. Our distance oracle uses $O(n^{7/4+\\varepsilon})$\nstorage and can report the hop distance between any two nodes in\n$\\mathcal{G}^{\\times}(\\mathcal{D})$ in $O(n^{3/4+\\varepsilon})$ time, up to an\nadditive error of one. So far, distance oracles with an additive error of one\nthat use subquadratic storage and sublinear query time were not known for such\ngeneral graph classes.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.04905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $d$ be a (well-behaved) shortest-path metric defined on a path-connected subset of $\mathbb{R}^2$ and let $\mathcal{D}=\{D_1,\ldots,D_n\}$ be a set of geodesic disks with respect to the metric $d$. We prove that $\mathcal{G}^{\times}(\mathcal{D})$, the intersection graph of the disks in $\mathcal{D}$, has a clique-based separator consisting of $O(n^{3/4+\varepsilon})$ cliques. This significantly extends the class of objects whose intersection graphs have small clique-based separators. Our clique-based separator yields an algorithm for $q$-COLORING that runs in time $2^{O(n^{3/4+\varepsilon})}$, assuming the boundaries of the disks $D_i$ can be computed in polynomial time. We also use our clique-based separator to obtain a simple, efficient, and almost exact distance oracle for intersection graphs of geodesic disks. Our distance oracle uses $O(n^{7/4+\varepsilon})$ storage and can report the hop distance between any two nodes in $\mathcal{G}^{\times}(\mathcal{D})$ in $O(n^{3/4+\varepsilon})$ time, up to an additive error of one. So far, distance oracles with an additive error of one that use subquadratic storage and sublinear query time were not known for such general graph classes.
$\mathbb{R}^2$中大地圆盘相交图的基于簇的分离器
让 $d$ 是定义在 $\mathbb{R}^2$ 的路径连接子集上的(良好的)最短路径度量,让 $\mathcal{D}=\{D_1,\ldots,D_n\}$ 是关于度量 $d$ 的大地圆盘集合。我们证明$\mathcal{G}^{times}(\mathcal{D})$,即$\mathcal{D}$中的磁盘的交集图,有一个由$O(n^{3/4+\varepsilon})$ 小块组成的基于小块的分离器。这极大地扩展了交集图具有小的基于小块的分离器的对象类别。我们的基于小块的分离器产生了一种 $q$-COLORING 算法,该算法的运行时间为 $2^{O(n^{3/4+\varepsilon})}$ ,前提是磁盘 $D_i$ 的边界可以在多项式时间内计算出来。我们还利用基于clique的分离器为大地圆盘的交集图提供了一个简单、高效、几乎精确的距离算法。我们的距离算法使用 $O(n^{7/4+\varepsilon})$ 存储空间,可以在 $O(n^{3/4+\varepsilon})$ 时间内报告任意两个节点在$\mathcal{G}^{\times}(\mathcal{D})$ 中的跳跃距离,误差不超过 1。迄今为止,还不知道在这样的通用图类中,使用亚二次存储和亚线性查询时间、加法误差为 1 的距离算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信