Yoko Marwidi, Hoang-Oanh B. Nguyen, David Santos, Tenzin Wangzor, Sumita Bhardwaj, Gabriel Ernie, Gregg Prawdzik, Garrett Lew, David Shivak, Michael Trias, Jada Padilla, Hung Tran, Kathleen Meyer, Richard Surosky, Alex Michael Ward
{"title":"A robust and flexible baculovirus-insect cell system for AAV vector production with improved yield, capsid ratios and potency","authors":"Yoko Marwidi, Hoang-Oanh B. Nguyen, David Santos, Tenzin Wangzor, Sumita Bhardwaj, Gabriel Ernie, Gregg Prawdzik, Garrett Lew, David Shivak, Michael Trias, Jada Padilla, Hung Tran, Kathleen Meyer, Richard Surosky, Alex Michael Ward","doi":"10.1016/j.omtm.2024.101228","DOIUrl":null,"url":null,"abstract":"Manufacturing of adeno-associated viruses (AAV) for gene and cell therapy applications has increased significantly and spurred development of improved mammalian and insect cell-based production systems. We developed a baculovirus-based insect cell production system—the SGMO Helper—with a novel gene architecture and greater flexibility to modulate the expression level and content of individual Rep and Cap proteins. In addition, we incorporated modifications to the AAV6 capsid sequence that improves yield, capsid integrity, and potency. Production of recombinant AAV 6 (rAAV6) using the SGMO Helper had improved yields compared to the Bac-RepCap helper from the Kotin lab. SGMO Helper-derived rAAV6 is resistant to a previously described proteolytic cleavage unique to baculovirus-insect cell production systems and has improved capsid ratios and potency, and , compared with rAAV6 produced using Bac-RepCap. Next-generation sequencing sequence analysis demonstrated that the SGMO Helper is stable over six serial passages and rAAV6 capsids contain comparable amounts of non-vector genome DNA as rAAV6 produced using Bac-RepCap. AAV production using the SGMO Helper is scalable using bioreactors and has improved yield, capsid ratio, and potency. Our studies demonstrate that the SGMO Helper is an improved platform for AAV manufacturing to enable delivery of cutting-edge gene and cell therapies.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"87 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2024.101228","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Manufacturing of adeno-associated viruses (AAV) for gene and cell therapy applications has increased significantly and spurred development of improved mammalian and insect cell-based production systems. We developed a baculovirus-based insect cell production system—the SGMO Helper—with a novel gene architecture and greater flexibility to modulate the expression level and content of individual Rep and Cap proteins. In addition, we incorporated modifications to the AAV6 capsid sequence that improves yield, capsid integrity, and potency. Production of recombinant AAV 6 (rAAV6) using the SGMO Helper had improved yields compared to the Bac-RepCap helper from the Kotin lab. SGMO Helper-derived rAAV6 is resistant to a previously described proteolytic cleavage unique to baculovirus-insect cell production systems and has improved capsid ratios and potency, and , compared with rAAV6 produced using Bac-RepCap. Next-generation sequencing sequence analysis demonstrated that the SGMO Helper is stable over six serial passages and rAAV6 capsids contain comparable amounts of non-vector genome DNA as rAAV6 produced using Bac-RepCap. AAV production using the SGMO Helper is scalable using bioreactors and has improved yield, capsid ratio, and potency. Our studies demonstrate that the SGMO Helper is an improved platform for AAV manufacturing to enable delivery of cutting-edge gene and cell therapies.
期刊介绍:
The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella.
Topics of particular interest within the journal''s scope include:
Gene vector engineering and production,
Methods for targeted genome editing and engineering,
Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells,
Methods for gene and cell vector delivery,
Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine,
Analysis of gene and cell vector biodistribution and tracking,
Pharmacology/toxicology studies of new and next-generation vectors,
Methods for cell isolation, engineering, culture, expansion, and transplantation,
Cell processing, storage, and banking for therapeutic application,
Preclinical and QC/QA assay development,
Translational and clinical scale-up and Good Manufacturing procedures and process development,
Clinical protocol development,
Computational and bioinformatic methods for analysis, modeling, or visualization of biological data,
Negotiating the regulatory approval process and obtaining such approval for clinical trials.