{"title":"Global analysis of a network-based SIR epidemic model with a saturated treatment function","authors":"Xiaodan Wei","doi":"10.1142/s1793524523501127","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study a network-based SIR epidemic model with a saturated treatment function in which a parameter <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> is introduced to measure the extent of the effect of the infected being delayed for treatment. Our aim is to present a global analysis and to investigate how the parameter <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> affects the spreading of diseases. Our main results are as follows: (1) In the case of the threshold value <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo><</mo><mn>1</mn></math></span><span></span>, there exist two values of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span>: <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span></span> and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>, such that the disease-free equilibrium is globally asymptotically stable when <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>≤</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span></span> and multiple endemic equilibria exist when <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>≥</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>. This means that the parameter <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> has an essential influence on the spreading of the disease. (2) In the case of the threshold value <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>1</mn></math></span><span></span>, if the model has only one endemic equilibrium, then the unique endemic equilibrium is globally attractive. In this case, it is also proved that if <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>≤</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span></span>, then the endemic equilibrium has only one, so is globally attractive. In addition, numerical simulation is performed to illustrate our theoretical results.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793524523501127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study a network-based SIR epidemic model with a saturated treatment function in which a parameter is introduced to measure the extent of the effect of the infected being delayed for treatment. Our aim is to present a global analysis and to investigate how the parameter affects the spreading of diseases. Our main results are as follows: (1) In the case of the threshold value , there exist two values of : and , such that the disease-free equilibrium is globally asymptotically stable when and multiple endemic equilibria exist when . This means that the parameter has an essential influence on the spreading of the disease. (2) In the case of the threshold value , if the model has only one endemic equilibrium, then the unique endemic equilibrium is globally attractive. In this case, it is also proved that if , then the endemic equilibrium has only one, so is globally attractive. In addition, numerical simulation is performed to illustrate our theoretical results.