{"title":"Large and Moderate Deviations for Empirical Density Fields of Stochastic Seir Epidemics with Vertex-Dependent Transition Rates","authors":"Xiaofeng Xue, Xueting Yin","doi":"10.1007/s11118-024-10133-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we are concerned with stochastic susceptible-exposed-infected-removed epidemics on complete graphs with vertex-dependent transition rates. Large and moderate deviations of empirical density fields of our models are given. Proofs of our main results utilize exponential martingale strategies. In the proof of the moderate deviation principle, we introduce an iteration approach to check the exponential tightness of scaled density fields of our processes. As an application of our main results, moderate deviations of a family of hitting times of our processes are also given.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"67 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10133-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we are concerned with stochastic susceptible-exposed-infected-removed epidemics on complete graphs with vertex-dependent transition rates. Large and moderate deviations of empirical density fields of our models are given. Proofs of our main results utilize exponential martingale strategies. In the proof of the moderate deviation principle, we introduce an iteration approach to check the exponential tightness of scaled density fields of our processes. As an application of our main results, moderate deviations of a family of hitting times of our processes are also given.
期刊介绍:
The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.