{"title":"PocketFlow is a data-and-knowledge-driven structure-based molecular generative model","authors":"Yuanyuan Jiang, Guo Zhang, Jing You, Hailin Zhang, Rui Yao, Huanzhang Xie, Liyun Zhang, Ziyi Xia, Mengzhe Dai, Yunjie Wu, Linli Li, Shengyong Yang","doi":"10.1038/s42256-024-00808-8","DOIUrl":null,"url":null,"abstract":"Deep learning-based molecular generation has extensive applications in many fields, particularly drug discovery. However, the majority of current deep generative models are ligand-based and do not consider chemical knowledge in the molecular generation process, often resulting in a relatively low success rate. We herein propose a structure-based molecular generative framework with chemical knowledge explicitly considered (named PocketFlow), which generates novel ligand molecules inside protein binding pockets. In various computational evaluations, PocketFlow showed state-of-the-art performance, with generated molecules being 100% chemically valid and highly drug-like. Ablation experiments prove the critical role of chemical knowledge in ensuring the validity and drug-likeness of the generated molecules. We applied PocketFlow to two new target proteins that are related to epigenetic regulation, HAT1 and YTHDC1, and successfully obtained wet-lab validated bioactive compounds. The binding modes of the active compounds with target proteins are close to those predicted by molecular docking and further confirmed by the X-ray crystal structure. All the results suggest that PocketFlow is a useful deep generative model, capable of generating innovative bioactive molecules from scratch given a protein binding pocket. Deep learning generative approaches have been used in recent years to discover new molecules with drug-like properties. To improve the performance of such approaches, Yang et al. add chemical binding knowledge to a deep generative framework and demonstrate, including by wet-lab verification, that the method can find valid molecules that successfully bind to target proteins.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 3","pages":"326-337"},"PeriodicalIF":18.8000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00808-8","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning-based molecular generation has extensive applications in many fields, particularly drug discovery. However, the majority of current deep generative models are ligand-based and do not consider chemical knowledge in the molecular generation process, often resulting in a relatively low success rate. We herein propose a structure-based molecular generative framework with chemical knowledge explicitly considered (named PocketFlow), which generates novel ligand molecules inside protein binding pockets. In various computational evaluations, PocketFlow showed state-of-the-art performance, with generated molecules being 100% chemically valid and highly drug-like. Ablation experiments prove the critical role of chemical knowledge in ensuring the validity and drug-likeness of the generated molecules. We applied PocketFlow to two new target proteins that are related to epigenetic regulation, HAT1 and YTHDC1, and successfully obtained wet-lab validated bioactive compounds. The binding modes of the active compounds with target proteins are close to those predicted by molecular docking and further confirmed by the X-ray crystal structure. All the results suggest that PocketFlow is a useful deep generative model, capable of generating innovative bioactive molecules from scratch given a protein binding pocket. Deep learning generative approaches have been used in recent years to discover new molecules with drug-like properties. To improve the performance of such approaches, Yang et al. add chemical binding knowledge to a deep generative framework and demonstrate, including by wet-lab verification, that the method can find valid molecules that successfully bind to target proteins.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.