Radon as a possible link between peak spring tides and lemming cycles

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Vidar Selås
{"title":"Radon as a possible link between peak spring tides and lemming cycles","authors":"Vidar Selås","doi":"10.1016/j.actao.2024.103987","DOIUrl":null,"url":null,"abstract":"<div><p>There is still no consensus regarding the ultimate cause of the famous 3–4-year population cycles of lemmings. According to the plant stress hypothesis, herbivore population peaks are caused by stress factors that force plants to reallocate stored defensive proteins to transportable and easily digestible N-compounds. One possible plant stress factor is ionization caused by exhalation of the radioactive noble gas radon, which is enhanced after spring tides, i.e., tides at new or full Moon. I hypothesized that increased ionization caused by radon accumulation in the subnivean space after peak spring tides, which occur close to perihelion (31 December–05 January, when the Earth–Sun distance is shortest), and at 3.8-year intervals, results in increased protein digestibility of mosses, which are important food for lemmings. Population outbreaks of Norway lemming <em>Lemmus lemmus</em> occurred two years after peak spring tides during 1871–1910, when also perigee (the time when the Earth–Moon distance is shortest) coincided with spring tides and perihelion. Thereafter this relationship weakened, and lemming peaks became less pronounced and more related to plant seed indices. As we have now entered a new 30-year period with coincidence of spring tide, perihelion and perigee, I predict more regular and pronounced lemming outbreaks in the next decades, unless radon accumulation is prevented by frequent lack of a stable snow cover due to global warming.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1146609X24000092/pdfft?md5=e3e37a77ccfdb2a79ef52a5e623b803b&pid=1-s2.0-S1146609X24000092-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1146609X24000092","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

There is still no consensus regarding the ultimate cause of the famous 3–4-year population cycles of lemmings. According to the plant stress hypothesis, herbivore population peaks are caused by stress factors that force plants to reallocate stored defensive proteins to transportable and easily digestible N-compounds. One possible plant stress factor is ionization caused by exhalation of the radioactive noble gas radon, which is enhanced after spring tides, i.e., tides at new or full Moon. I hypothesized that increased ionization caused by radon accumulation in the subnivean space after peak spring tides, which occur close to perihelion (31 December–05 January, when the Earth–Sun distance is shortest), and at 3.8-year intervals, results in increased protein digestibility of mosses, which are important food for lemmings. Population outbreaks of Norway lemming Lemmus lemmus occurred two years after peak spring tides during 1871–1910, when also perigee (the time when the Earth–Moon distance is shortest) coincided with spring tides and perihelion. Thereafter this relationship weakened, and lemming peaks became less pronounced and more related to plant seed indices. As we have now entered a new 30-year period with coincidence of spring tide, perihelion and perigee, I predict more regular and pronounced lemming outbreaks in the next decades, unless radon accumulation is prevented by frequent lack of a stable snow cover due to global warming.

氡是春潮高峰与旅鼠周期之间可能存在的联系
关于旅鼠著名的 3-4 年种群周期的最终原因,目前仍未达成共识。根据植物胁迫假说,食草动物的数量高峰是由胁迫因素造成的,这些因素迫使植物将储存的防御性蛋白质重新分配给可运输且易消化的氮化合物。其中一个可能的植物应激因素是放射性惰性气体氡的呼出引起的电离,这种电离在春潮(即新月或满月时的潮汐)后增强。我的假设是,春潮接近近日点(12 月 31 日至 1 月 5 日,此时地球与太阳的距离最短)时,每隔 3.8 年就会出现一次春潮,春潮高峰过后,五线谱下空间的氡积累导致电离作用增强,从而增加了苔藓的蛋白质消化率,而苔藓是旅鼠的重要食物。1871-1910 年间,挪威旅鼠 Lemmus lemmus 在春潮高峰后两年爆发,当时近地点(地月距离最短的时间)也与春潮和近日点重合。此后,这种关系减弱,旅鼠峰值变得不那么明显,与植物种子指数的关系更加密切。由于我们现在已经进入了春潮、近日点和近地点重合的新的 30 年时期,我预测未来几十年旅鼠的爆发会更加规律和明显,除非由于全球变暖而经常缺乏稳定的积雪覆盖,导致氡的积累受到阻碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信