Inferring Neural Communication Dynamics from Field Potentials Using Graph Diffusion Autoregression.

Felix Schwock, Julien Bloch, Karam Khateeb, Jasmine Zhou, Les Atlas, Azadeh Yazdan-Shahmorad
{"title":"Inferring Neural Communication Dynamics from Field Potentials Using Graph Diffusion Autoregression.","authors":"Felix Schwock, Julien Bloch, Karam Khateeb, Jasmine Zhou, Les Atlas, Azadeh Yazdan-Shahmorad","doi":"10.1101/2024.02.26.582177","DOIUrl":null,"url":null,"abstract":"<p><p>Estimating dynamic network communication is attracting increased attention, spurred by rapid advancements in multi-site neural recording technologies and efforts to better understand cognitive processes. Yet, traditional methods, which infer communication from statistical dependencies among distributed neural recordings, face core limitations: they do not incorporate possible mechanisms of neural communication, neglect spatial information from the recording setup, and yield predominantly static estimates that cannot capture rapid changes in the brain. To address these issues, we introduce the graph diffusion autoregressive model. Designed for distributed field potential recordings, our model combines vector autoregression with a network communication process to produce a high-resolution communication signal. We successfully validated the model on simulated neural activity and recordings from subdural and intracortical micro-electrode arrays placed in macaque sensorimotor cortex demonstrating its ability to describe rapid communication dynamics induced by optogenetic stimulation, changes in resting state communication, and neural correlates of behavior during a reach task.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10925120/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.02.26.582177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating dynamic network communication is attracting increased attention, spurred by rapid advancements in multi-site neural recording technologies and efforts to better understand cognitive processes. Yet, traditional methods, which infer communication from statistical dependencies among distributed neural recordings, face core limitations: they do not incorporate possible mechanisms of neural communication, neglect spatial information from the recording setup, and yield predominantly static estimates that cannot capture rapid changes in the brain. To address these issues, we introduce the graph diffusion autoregressive model. Designed for distributed field potential recordings, our model combines vector autoregression with a network communication process to produce a high-resolution communication signal. We successfully validated the model on simulated neural activity and recordings from subdural and intracortical micro-electrode arrays placed in macaque sensorimotor cortex demonstrating its ability to describe rapid communication dynamics induced by optogenetic stimulation, changes in resting state communication, and neural correlates of behavior during a reach task.

利用图形扩散自回归从场电位推断神经通信动态
多点神经记录技术的飞速发展以及人们为更好地理解认知过程所做的努力推动了对动态网络通信的估算日益受到关注。然而,根据分布式神经记录之间的统计依赖关系推断交流的传统方法面临着核心限制:它们不能以生物学上合理的方式模拟神经交互,忽略了记录设置的空间信息,而且产生的主要是静态估计值,无法捕捉大脑中的快速变化。为了解决这些问题,我们引入了图形扩散自回归模型。我们的模型专为分布式场电位记录而设计,将矢量自回归与网络通信过程相结合,从而产生高分辨率的通信信号。我们成功地在模拟神经活动以及放置在猕猴感觉运动皮层的硬膜下和皮层内微型电极阵列的记录中验证了该模型,证明它有能力描述光遗传刺激引起的快速通信动态、静息状态通信的变化以及伸手任务中的逐次试验变异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信