{"title":"Precision dosing for patients on tricyclic antidepressants.","authors":"Zahi Nakad, Yolande Saab","doi":"10.1097/FPC.0000000000000527","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>We aim to develop a personalized dosing tool for tricyclic antidepressants (TCAs) that integrates CYP2D6 and CYP2C19 gene variants and their effects while also considering the polypharmacy effect.</p><p><strong>Methods: </strong>The study first adopted a scoring system that assigns weights to each genetic variant. A formula was then developed to compute the effect of both genes' variants on drug dosing. The output of the formula was assessed by a comparison with the clinical pharmacogenetics implementation consortium recommendation. The study also accounts for the effect of the co-administration of inhibitors and inducers on drug metabolism. Accordingly, a user-friendly tool, Clinical Dosing Tool ver.2, was created to assist clinicians in dosing patients on TCAs.</p><p><strong>Results: </strong>The study provides a comprehensive list of all alleles with corresponding activity values and phenotypes for both enzymes. The tool calculated an updated area under the curve ratio that utilizes the effects of both enzymes' variants for dose adjustment. The tool provided a more accurate individualized dosing that also integrates the polypharmacy effect.</p><p><strong>Conclusion: </strong>To the best of our knowledge, the literature misses such a tool that provides a numerical adjusted dose based on continuous numerical activity scores for the considered patients' alleles and phenoconversion.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":" ","pages":"117-125"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenetics and genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FPC.0000000000000527","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: We aim to develop a personalized dosing tool for tricyclic antidepressants (TCAs) that integrates CYP2D6 and CYP2C19 gene variants and their effects while also considering the polypharmacy effect.
Methods: The study first adopted a scoring system that assigns weights to each genetic variant. A formula was then developed to compute the effect of both genes' variants on drug dosing. The output of the formula was assessed by a comparison with the clinical pharmacogenetics implementation consortium recommendation. The study also accounts for the effect of the co-administration of inhibitors and inducers on drug metabolism. Accordingly, a user-friendly tool, Clinical Dosing Tool ver.2, was created to assist clinicians in dosing patients on TCAs.
Results: The study provides a comprehensive list of all alleles with corresponding activity values and phenotypes for both enzymes. The tool calculated an updated area under the curve ratio that utilizes the effects of both enzymes' variants for dose adjustment. The tool provided a more accurate individualized dosing that also integrates the polypharmacy effect.
Conclusion: To the best of our knowledge, the literature misses such a tool that provides a numerical adjusted dose based on continuous numerical activity scores for the considered patients' alleles and phenoconversion.
期刊介绍:
Pharmacogenetics and Genomics is devoted to the rapid publication of research papers, brief review articles and short communications on genetic determinants in response to drugs and other chemicals in humans and animals. The Journal brings together papers from the entire spectrum of biomedical research and science, including biochemistry, bioinformatics, clinical pharmacology, clinical pharmacy, epidemiology, genetics, genomics, molecular biology, pharmacology, pharmaceutical sciences, and toxicology. Under a single cover, the Journal provides a forum for all aspects of the genetics and genomics of host response to exogenous chemicals: from the gene to the clinic.