Simplifying stable CHO cell line generation with high probability of monoclonality by using microfluidic dispensing as an alternative to fluorescence activated cell sorting
IF 2.5 3区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Lina Chakrabarti, James Savery, John Patrick Mpindi, Judith Klover, Lina Li, Jie Zhu
{"title":"Simplifying stable CHO cell line generation with high probability of monoclonality by using microfluidic dispensing as an alternative to fluorescence activated cell sorting","authors":"Lina Chakrabarti, James Savery, John Patrick Mpindi, Judith Klover, Lina Li, Jie Zhu","doi":"10.1002/btpr.3441","DOIUrl":null,"url":null,"abstract":"<p>Single cell cloning is a critical step for cell line development (CLD) for therapeutic protein production, with proof of monoclonality being compulsorily sought in regulatory filings. Among the different single cell deposition technologies, we found that fluorescence activated cell sorting (FACS) offers high probability of monoclonality and can allow selective enrichment of the producer cells. However, FACS instruments are expensive and resource-intensive, have a large footprint, require highly skilled operators and take hours for setup, thereby complicating the cell line generation process. With the aim of finding an easy-to-use alternative to FACS, we identified a flow cytometry-based microfluidic cell dispenser, which presents a single cell sorting solution for biopharmaceutical CLD. The microfluidic cell dispenser is small, budget-friendly, easy-to-use, requires lower-cost consumables, permits flow cytometry-enabled multiparametric target cell enrichment and offers fast and gentle single cell dispensing into multiwell plates. Following comprehensive evaluation, we found that single cell deposition by the microfluidic cell dispenser resulted in >99% probability of monoclonality for production cell lines. Moreover, the clonally derived producer cell lines generated from the microfluidic cell dispenser demonstrated comparable or improved growth profiles and production capability compared to the FACS derived cell lines. Taken together, microfluidic cell dispensing can serve as a cost-effective, efficient and convenient alternative to FACS, simplifying the biopharmaceutical CLD platform with significant reductions in both scientist time and running costs.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btpr.3441","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3441","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Single cell cloning is a critical step for cell line development (CLD) for therapeutic protein production, with proof of monoclonality being compulsorily sought in regulatory filings. Among the different single cell deposition technologies, we found that fluorescence activated cell sorting (FACS) offers high probability of monoclonality and can allow selective enrichment of the producer cells. However, FACS instruments are expensive and resource-intensive, have a large footprint, require highly skilled operators and take hours for setup, thereby complicating the cell line generation process. With the aim of finding an easy-to-use alternative to FACS, we identified a flow cytometry-based microfluidic cell dispenser, which presents a single cell sorting solution for biopharmaceutical CLD. The microfluidic cell dispenser is small, budget-friendly, easy-to-use, requires lower-cost consumables, permits flow cytometry-enabled multiparametric target cell enrichment and offers fast and gentle single cell dispensing into multiwell plates. Following comprehensive evaluation, we found that single cell deposition by the microfluidic cell dispenser resulted in >99% probability of monoclonality for production cell lines. Moreover, the clonally derived producer cell lines generated from the microfluidic cell dispenser demonstrated comparable or improved growth profiles and production capability compared to the FACS derived cell lines. Taken together, microfluidic cell dispensing can serve as a cost-effective, efficient and convenient alternative to FACS, simplifying the biopharmaceutical CLD platform with significant reductions in both scientist time and running costs.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.