Using deep learning to address the security issue in intelligent transportation systems

R. Boddu, Radha Raman Chandan, M. Thamizharasi, Riyaj Shaikh, Adheer A. Goyal, Pragya Prashant Gupta, Shashi Kant Gupta
{"title":"Using deep learning to address the security issue in intelligent transportation systems","authors":"R. Boddu, Radha Raman Chandan, M. Thamizharasi, Riyaj Shaikh, Adheer A. Goyal, Pragya Prashant Gupta, Shashi Kant Gupta","doi":"10.32629/jai.v7i4.1220","DOIUrl":null,"url":null,"abstract":"The lives of people are at risk from security and safety risks with Intelligent Transportation Systems (ITS), particularly Autonomous Vehicles. In contrast to manual vehicles, the Security of an AV’s computer and communications components may be penetrated using sophisticated hacking methods, preventing us from employing AVs in our daily lives. The Internet of Vehicles, which connects manual automobiles to the Internet, is vulnerable to cyber-attacks such as lack of service, spoofing, sniffer, widespread denial of service and repeat attacks. This paper presents a unique intrusion detection system for ITS, using Enhanced Cuttle Fish Optimized Multiscale Convolution Neural Network (ECFO-MCNN), that uses vehicles to identify networks and infrastructure and detects careful network activity of in-vehicle networks. The primary goal of the suggested strategy is to identify forward events emanating through AVs’ central network gateways. Two benchmark datasets, namely the UNSWNB15 dataset for external network communications and the car hacking dataset for in-vehicle communications, are used to assess the proposed IDS. The evaluation’s findings showed that the performance of our suggested system is superior to that of traditional intrusion detection methods.","PeriodicalId":508223,"journal":{"name":"Journal of Autonomous Intelligence","volume":" January","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Autonomous Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32629/jai.v7i4.1220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The lives of people are at risk from security and safety risks with Intelligent Transportation Systems (ITS), particularly Autonomous Vehicles. In contrast to manual vehicles, the Security of an AV’s computer and communications components may be penetrated using sophisticated hacking methods, preventing us from employing AVs in our daily lives. The Internet of Vehicles, which connects manual automobiles to the Internet, is vulnerable to cyber-attacks such as lack of service, spoofing, sniffer, widespread denial of service and repeat attacks. This paper presents a unique intrusion detection system for ITS, using Enhanced Cuttle Fish Optimized Multiscale Convolution Neural Network (ECFO-MCNN), that uses vehicles to identify networks and infrastructure and detects careful network activity of in-vehicle networks. The primary goal of the suggested strategy is to identify forward events emanating through AVs’ central network gateways. Two benchmark datasets, namely the UNSWNB15 dataset for external network communications and the car hacking dataset for in-vehicle communications, are used to assess the proposed IDS. The evaluation’s findings showed that the performance of our suggested system is superior to that of traditional intrusion detection methods.
利用深度学习解决智能交通系统的安全问题
智能交通系统(ITS),尤其是自动驾驶汽车的安全和安保风险危及人们的生命安全。与手动车辆相比,自动驾驶汽车的计算机和通信组件的安全性可能会被复杂的黑客手段攻破,使我们无法在日常生活中使用自动驾驶汽车。将手动汽车连接到互联网的车联网很容易受到网络攻击,如缺乏服务、欺骗、嗅探、大范围拒绝服务和重复攻击。本文介绍了一种独特的智能交通系统入侵检测系统,该系统采用增强型刀鱼优化多尺度卷积神经网络(ECFO-MCNN),利用车辆识别网络和基础设施,并检测车载网络的谨慎网络活动。建议策略的主要目标是识别通过自动驾驶汽车中央网络网关发出的前向事件。两个基准数据集,即用于外部网络通信的 UNSWNB15 数据集和用于车内通信的汽车黑客数据集,被用来评估所建议的 IDS。评估结果表明,我们建议的系统性能优于传统的入侵检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信