Keep the Human in the Loop: Arguments for Human Assistance in the Synthesis of Simulation Data for Robot Training

C. Liebers, Pranav Megarajan, Jonas Auda, Tim Claudius Stratmann, Max Pfingsthorn, Uwe Gruenefeld, Stefan Schneegass
{"title":"Keep the Human in the Loop: Arguments for Human Assistance in the Synthesis of Simulation Data for Robot Training","authors":"C. Liebers, Pranav Megarajan, Jonas Auda, Tim Claudius Stratmann, Max Pfingsthorn, Uwe Gruenefeld, Stefan Schneegass","doi":"10.3390/mti8030018","DOIUrl":null,"url":null,"abstract":"Robot training often takes place in simulated environments, particularly with reinforcement learning. Therefore, multiple training environments are generated using domain randomization to ensure transferability to real-world applications and compensate for unknown real-world states. We propose improving domain randomization by involving human application experts in various stages of the training process. Experts can provide valuable judgments on simulation realism, identify missing properties, and verify robot execution. Our human-in-the-loop workflow describes how they can enhance the process in five stages: validating and improving real-world scans, correcting virtual representations, specifying application-specific object properties, verifying and influencing simulation environment generation, and verifying robot training. We outline examples and highlight research opportunities. Furthermore, we present a case study in which we implemented different prototypes, demonstrating the potential of human experts in the given stages. Our early insights indicate that human input can benefit robot training at different stages.","PeriodicalId":508555,"journal":{"name":"Multimodal Technologies and Interaction","volume":" November","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Technologies and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mti8030018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Robot training often takes place in simulated environments, particularly with reinforcement learning. Therefore, multiple training environments are generated using domain randomization to ensure transferability to real-world applications and compensate for unknown real-world states. We propose improving domain randomization by involving human application experts in various stages of the training process. Experts can provide valuable judgments on simulation realism, identify missing properties, and verify robot execution. Our human-in-the-loop workflow describes how they can enhance the process in five stages: validating and improving real-world scans, correcting virtual representations, specifying application-specific object properties, verifying and influencing simulation environment generation, and verifying robot training. We outline examples and highlight research opportunities. Furthermore, we present a case study in which we implemented different prototypes, demonstrating the potential of human experts in the given stages. Our early insights indicate that human input can benefit robot training at different stages.
让人类参与其中:机器人训练模拟数据合成中的人工辅助论证
机器人训练通常在模拟环境中进行,特别是在强化学习中。因此,需要使用领域随机化来生成多个训练环境,以确保机器人可迁移到真实世界的应用中,并对未知的真实世界状态进行补偿。我们建议通过让人类应用专家参与训练过程的各个阶段来改进领域随机化。专家可以对仿真的真实性做出有价值的判断,识别缺失的属性,并验证机器人的执行情况。我们的 "人在环中 "工作流程描述了他们如何在五个阶段中改进流程:验证和改进真实世界扫描、纠正虚拟表示、指定特定应用对象属性、验证和影响仿真环境生成,以及验证机器人训练。我们概述了一些实例,并强调了研究机会。此外,我们还介绍了一个案例研究,其中我们实施了不同的原型,展示了人类专家在特定阶段的潜力。我们的初步研究表明,人类的投入能够在不同阶段为机器人训练带来益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信