Urvashi Gupta, A. Chauhan, H. Tuli, S. Ramniwas, Moyad Shahwan, T. Jindal
{"title":"Energy Requirement of Wastewater Treatment Plants: Unleashing the Potential of Microalgae, Biogas and Solar Power for Sustainable Development","authors":"Urvashi Gupta, A. Chauhan, H. Tuli, S. Ramniwas, Moyad Shahwan, T. Jindal","doi":"10.46488/nept.2024.v23i01.053","DOIUrl":null,"url":null,"abstract":"Sustainable energy legislation in the modern world is the primary strategy that has raised the benchmark for energy and environmental security globally. The rapid growth in the human population has led to rising energy needs, which are predicted to increase by at least 50% by 2030. Waste management and environmental pollution present the biggest challenge to developing countries. The improvement of energy efficiency while ensuring higher nutritional evacuation wastewater treatment plants (WWTPs) is a significant problem for many wastewater treatment plants. Some treatment techniques require high energy input, which makes them expensive to remediate water use. Pollutants like chemical pesticides, hydrocarbons, colorants (dyes), surfactants, and aromatic compounds are present in wastewater and are contributing to other problems. Israel consumes 10% of the global energy supply, significantly more than other countries. The lagoon and trickling filters are the most widely used technologies in South African WWTPs, where the electricity intensity ranges from 0.079 to 0.41 kWh.m-3 (Wang et al. 2016). Korea and India use almost the same energy (0.24 kWh.m-3). An estimated one-fifth of the energy used in a municipality’s WWTPs is used for overall public utilities, and this percentage is anticipated to rise by 20% over the next 15 years owing to expanding consumption of water and higher standards. In this review paper, we examined the potential for creating energy-self-sufficient WWTPs and discussed how much energy is currently consumed by WWTPs. The desirable qualities of microalgae, their production on a global level, technologies for treating wastewater with biogas and solar power, its developments, and issues for sustainable development are highlighted. The scientific elaboration of the mechanisms used for pollutant degradation using solar energy, as well as their viability, are the key issues that have been addressed.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Environment and Pollution Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46488/nept.2024.v23i01.053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Sustainable energy legislation in the modern world is the primary strategy that has raised the benchmark for energy and environmental security globally. The rapid growth in the human population has led to rising energy needs, which are predicted to increase by at least 50% by 2030. Waste management and environmental pollution present the biggest challenge to developing countries. The improvement of energy efficiency while ensuring higher nutritional evacuation wastewater treatment plants (WWTPs) is a significant problem for many wastewater treatment plants. Some treatment techniques require high energy input, which makes them expensive to remediate water use. Pollutants like chemical pesticides, hydrocarbons, colorants (dyes), surfactants, and aromatic compounds are present in wastewater and are contributing to other problems. Israel consumes 10% of the global energy supply, significantly more than other countries. The lagoon and trickling filters are the most widely used technologies in South African WWTPs, where the electricity intensity ranges from 0.079 to 0.41 kWh.m-3 (Wang et al. 2016). Korea and India use almost the same energy (0.24 kWh.m-3). An estimated one-fifth of the energy used in a municipality’s WWTPs is used for overall public utilities, and this percentage is anticipated to rise by 20% over the next 15 years owing to expanding consumption of water and higher standards. In this review paper, we examined the potential for creating energy-self-sufficient WWTPs and discussed how much energy is currently consumed by WWTPs. The desirable qualities of microalgae, their production on a global level, technologies for treating wastewater with biogas and solar power, its developments, and issues for sustainable development are highlighted. The scientific elaboration of the mechanisms used for pollutant degradation using solar energy, as well as their viability, are the key issues that have been addressed.
期刊介绍:
The journal was established initially by the name of Journal of Environment and Pollution in 1994, whose name was later changed to Nature Environment and Pollution Technology in the year 2002. It has now become an open access online journal from the year 2017 with ISSN: 2395-3454 (Online). The journal was established especially to promote the cause for environment and to cater the need for rapid dissemination of the vast scientific and technological data generated in this field. It is a part of many reputed international indexing and abstracting agencies. The Journal has evoked a highly encouraging response among the researchers, scientists and technocrats. It has a reputed International Editorial Board and publishes peer reviewed papers. The Journal has also been approved by UGC (India). The journal publishes both original research and review papers. The ideology and scope of the Journal includes the following. -Monitoring, control and management of air, water, soil and noise pollution -Solid waste management -Industrial hygiene and occupational health -Biomedical aspects of pollution -Toxicological studies -Radioactive pollution and radiation effects -Wastewater treatment and recycling etc. -Environmental modelling -Biodiversity and conservation -Dynamics and behaviour of chemicals in environment -Natural resources, wildlife, forests and wetlands etc. -Environmental laws and legal aspects -Environmental economics -Any other topic related to environment