The mass gap in five dimensional Einstein–Gauss–Bonnet black holes: a geometrical explanation

C. Hansraj, R. Goswami, S. D. Maharaj
{"title":"The mass gap in five dimensional Einstein–Gauss–Bonnet black holes: a geometrical explanation","authors":"C. Hansraj, R. Goswami, S. D. Maharaj","doi":"10.1088/1361-6382/ad28f8","DOIUrl":null,"url":null,"abstract":"\n It is well known that, unlike in higher dimensional general relativity (GR), we cannot have a black hole with an arbitrarily small mass in five dimensional Einstein–Gauss–Bonnet gravity. When we study the dynamical black hole formation via the radiation collapse in the radiating Boulware–Deser spacetime in five dimensions, the central zero mass singularity is weak, conical and naked, and the horizon forms only when a finite amount of matter, that depends on the coupling constant of the Gauss–Bonnet term, falls into the central singularity. To understand this phenomenon transparently and geometrically, we study the radiating Boulware–Deser spacetime in five dimensions using a 1+1+3 spacetime decomposition, for the first time. We find that the geometric and thermodynamic quantities can be expressed in terms of the gravitational mass and the Gauss–Bonnet (GB) parameter and separate each of them into their Gauss–Bonnet and matter parts. Drawing comparisons with five dimensional GR at every step, we explicitly show how the mass gap arises for a general mass function M(v) and what functions for M(v) make certain geometrical quantities well defined at the central singularity. We show in the case of self-similar radiation collapse in the modified theory, the central singularity is not a sink for timelike geodesics and is extendable. This clearly demonstrates how the GB invariant affects the nature of the final state of a continual collapse in this modified theory.","PeriodicalId":505126,"journal":{"name":"Classical and Quantum Gravity","volume":"120 50","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad28f8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is well known that, unlike in higher dimensional general relativity (GR), we cannot have a black hole with an arbitrarily small mass in five dimensional Einstein–Gauss–Bonnet gravity. When we study the dynamical black hole formation via the radiation collapse in the radiating Boulware–Deser spacetime in five dimensions, the central zero mass singularity is weak, conical and naked, and the horizon forms only when a finite amount of matter, that depends on the coupling constant of the Gauss–Bonnet term, falls into the central singularity. To understand this phenomenon transparently and geometrically, we study the radiating Boulware–Deser spacetime in five dimensions using a 1+1+3 spacetime decomposition, for the first time. We find that the geometric and thermodynamic quantities can be expressed in terms of the gravitational mass and the Gauss–Bonnet (GB) parameter and separate each of them into their Gauss–Bonnet and matter parts. Drawing comparisons with five dimensional GR at every step, we explicitly show how the mass gap arises for a general mass function M(v) and what functions for M(v) make certain geometrical quantities well defined at the central singularity. We show in the case of self-similar radiation collapse in the modified theory, the central singularity is not a sink for timelike geodesics and is extendable. This clearly demonstrates how the GB invariant affects the nature of the final state of a continual collapse in this modified theory.
五维爱因斯坦-高斯-波内特黑洞的质量差距:一种几何解释
众所周知,与高维度广义相对论(GR)不同,在五维度爱因斯坦-高斯-波奈引力中,我们不可能有一个任意小质量的黑洞。当我们研究五维布瓦-戴塞尔辐射时空中通过辐射坍缩形成的动力学黑洞时,中心零质量奇点是弱的、圆锥形的和裸露的,只有当有限数量的物质(取决于高斯-波内特项的耦合常数)落入中心奇点时才会形成视界。为了从几何角度透明地理解这一现象,我们首次使用 1+1+3 时空分解法研究了五维空间中的辐射布尔韦尔-戴塞尔时空。我们发现几何量和热力学量可以用引力质量和高斯-波奈(GB)参数来表示,并把它们分别分成高斯-波奈部分和物质部分。通过与五维 GR 的每一步比较,我们明确显示了一般质量函数 M(v) 的质量差距是如何产生的,以及 M(v) 的哪些函数使得某些几何量在中心奇点处定义良好。我们表明,在修正理论中的自相似辐射坍缩情况下,中心奇点不是时间似大地线的汇,而且是可扩展的。这清楚地表明了 GB 不变式如何影响该修正理论中持续坍缩最终状态的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信