Proteomics techniques in protein biomarker discovery

IF 0.6 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Mahsa Babaei, S. Kashanian, Huang‐Teck Lee, Frances Harding
{"title":"Proteomics techniques in protein biomarker discovery","authors":"Mahsa Babaei, S. Kashanian, Huang‐Teck Lee, Frances Harding","doi":"10.1002/qub2.35","DOIUrl":null,"url":null,"abstract":"Protein biomarkers represent specific biological activities and processes, so they have had a critical role in cancer diagnosis and medical care for more than 50 years. With the recent improvement in proteomics technologies, thousands of protein biomarker candidates have been developed for diverse disease states. Studies have used different types of samples for proteomics diagnosis. Samples were pretreated with appropriate techniques to increase the selectivity and sensitivity of the downstream analysis and purified to remove the contaminants. The purified samples were analyzed by several principal proteomics techniques to identify the specific protein. In this study, recent improvements in protein biomarker discovery, verification, and validation are investigated. Furthermore, the advantages, and disadvantages of conventional techniques, are discussed. Studies have used mass spectroscopy (MS) as a critical technique in the identification and quantification of candidate biomarkers. Nevertheless, after protein biomarker discovery, verification and validation have been required to reduce the false‐positive rate where there have been higher number of samples. Multiple reaction monitoring (MRM), parallel reaction monitoring (PRM), and selected reaction monitoring (SRM), in combination with stable isotope‐labeled internal standards, have been examined as options for biomarker verification, and enzyme‐linked immunosorbent assay (ELISA) for validation.","PeriodicalId":45660,"journal":{"name":"Quantitative Biology","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/qub2.35","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein biomarkers represent specific biological activities and processes, so they have had a critical role in cancer diagnosis and medical care for more than 50 years. With the recent improvement in proteomics technologies, thousands of protein biomarker candidates have been developed for diverse disease states. Studies have used different types of samples for proteomics diagnosis. Samples were pretreated with appropriate techniques to increase the selectivity and sensitivity of the downstream analysis and purified to remove the contaminants. The purified samples were analyzed by several principal proteomics techniques to identify the specific protein. In this study, recent improvements in protein biomarker discovery, verification, and validation are investigated. Furthermore, the advantages, and disadvantages of conventional techniques, are discussed. Studies have used mass spectroscopy (MS) as a critical technique in the identification and quantification of candidate biomarkers. Nevertheless, after protein biomarker discovery, verification and validation have been required to reduce the false‐positive rate where there have been higher number of samples. Multiple reaction monitoring (MRM), parallel reaction monitoring (PRM), and selected reaction monitoring (SRM), in combination with stable isotope‐labeled internal standards, have been examined as options for biomarker verification, and enzyme‐linked immunosorbent assay (ELISA) for validation.
发现蛋白质生物标记物的蛋白质组学技术
蛋白质生物标志物代表着特定的生物活动和过程,因此 50 多年来,它们在癌症诊断和医疗保健中发挥着至关重要的作用。近年来,随着蛋白质组学技术的不断进步,针对不同疾病状态开发出了数千种候选蛋白质生物标志物。研究使用了不同类型的样本进行蛋白质组学诊断。样本通过适当的技术进行预处理,以提高下游分析的选择性和灵敏度,并进行纯化以去除杂质。纯化后的样本通过几种主要的蛋白质组学技术进行分析,以确定特定的蛋白质。本研究探讨了蛋白质生物标记物发现、验证和确认方面的最新进展。此外,还讨论了传统技术的优缺点。研究已将质谱(MS)作为识别和量化候选生物标记物的关键技术。然而,在发现蛋白质生物标记物之后,还需要进行验证和确认,以降低样本数量较多时的假阳性率。多反应监测 (MRM)、平行反应监测 (PRM) 和选择反应监测 (SRM) 与稳定同位素标记的内标相结合,已被视为生物标记物验证的备选方法,而酶联免疫吸附测定 (ELISA) 则可用于验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantitative Biology
Quantitative Biology MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
5.00
自引率
3.20%
发文量
264
期刊介绍: Quantitative Biology is an interdisciplinary journal that focuses on original research that uses quantitative approaches and technologies to analyze and integrate biological systems, construct and model engineered life systems, and gain a deeper understanding of the life sciences. It aims to provide a platform for not only the analysis but also the integration and construction of biological systems. It is a quarterly journal seeking to provide an inter- and multi-disciplinary forum for a broad blend of peer-reviewed academic papers in order to promote rapid communication and exchange between scientists in the East and the West. The content of Quantitative Biology will mainly focus on the two broad and related areas: ·bioinformatics and computational biology, which focuses on dealing with information technologies and computational methodologies that can efficiently and accurately manipulate –omics data and transform molecular information into biological knowledge. ·systems and synthetic biology, which focuses on complex interactions in biological systems and the emergent functional properties, and on the design and construction of new biological functions and systems. Its goal is to reflect the significant advances made in quantitatively investigating and modeling both natural and engineered life systems at the molecular and higher levels. The journal particularly encourages original papers that link novel theory with cutting-edge experiments, especially in the newly emerging and multi-disciplinary areas of research. The journal also welcomes high-quality reviews and perspective articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信