Investigating gender and racial biases in DALL-E Mini Images

Marc Cheong, Ehsan Abedin, Marinus Ferreira, Ritsaart Reimann, Shalom Chalson, Pamela Robinson, Joanne Byrne, Leah Ruppanner, Mark Alfano, Colin Klein
{"title":"Investigating gender and racial biases in DALL-E Mini Images","authors":"Marc Cheong, Ehsan Abedin, Marinus Ferreira, Ritsaart Reimann, Shalom Chalson, Pamela Robinson, Joanne Byrne, Leah Ruppanner, Mark Alfano, Colin Klein","doi":"10.1145/3649883","DOIUrl":null,"url":null,"abstract":"Generative artificial intelligence systems based on transformers, including both text-generators like GPT-4 and image generators like DALL-E 3, have recently entered the popular consciousness. These tools, while impressive, are liable to reproduce, exacerbate, and reinforce extant human social biases, such as gender and racial biases. In this paper, we systematically review the extent to which DALL-E Mini suffers from this problem. In line with the Model Card published alongside DALL-E Mini by its creators, we find that the images it produces tend to represent dozens of different occupations as populated either solely by men (e.g., pilot, builder, plumber) or solely by women (e.g., hairdresser, receptionist, dietitian). In addition, the images DALL-E Mini produces tend to represent most occupations as populated primarily or solely by White people (e.g., farmer, painter, prison officer, software engineer) and very few by non-White people (e.g., pastor, rapper). These findings suggest that exciting new AI technologies should be critically scrutinized and perhaps regulated before they are unleashed on society.","PeriodicalId":486991,"journal":{"name":"ACM Journal on Responsible Computing","volume":"37 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Responsible Computing","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1145/3649883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generative artificial intelligence systems based on transformers, including both text-generators like GPT-4 and image generators like DALL-E 3, have recently entered the popular consciousness. These tools, while impressive, are liable to reproduce, exacerbate, and reinforce extant human social biases, such as gender and racial biases. In this paper, we systematically review the extent to which DALL-E Mini suffers from this problem. In line with the Model Card published alongside DALL-E Mini by its creators, we find that the images it produces tend to represent dozens of different occupations as populated either solely by men (e.g., pilot, builder, plumber) or solely by women (e.g., hairdresser, receptionist, dietitian). In addition, the images DALL-E Mini produces tend to represent most occupations as populated primarily or solely by White people (e.g., farmer, painter, prison officer, software engineer) and very few by non-White people (e.g., pastor, rapper). These findings suggest that exciting new AI technologies should be critically scrutinized and perhaps regulated before they are unleashed on society.
调查《DALL-E》迷你影像中的性别和种族偏见
基于变压器的人工智能生成系统,包括 GPT-4 等文本生成器和 DALL-E 3 等图像生成器,最近已进入大众视野。这些工具虽然给人留下了深刻印象,但也有可能复制、加剧和强化人类现存的社会偏见,如性别和种族偏见。在本文中,我们将系统回顾《迷你机器人达利》在多大程度上存在这一问题。与《迷你达利》的制作者同时发布的 "模型卡 "相一致,我们发现它所生成的图像往往代表了数十种不同的职业,要么只有男性(如飞行员、建筑工人、水管工),要么只有女性(如理发师、接待员、营养师)。此外,"迷你达利 "生成的图像倾向于表现大多数职业主要或仅由白人从事(如农民、画家、监狱官、软件工程师),而很少有非白人从事(如牧师、说唱歌手)。这些研究结果表明,令人兴奋的人工智能新技术在向社会释放之前,应该受到严格的审查和监管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信