Naturalize Revolution: Unprecedented AI-Driven Precision in Skin Cancer Classification Using Deep Learning

Mohamad Abou Ali, F. Dornaika, I. Arganda-Carreras, Hussein Ali, Malak Karaouni
{"title":"Naturalize Revolution: Unprecedented AI-Driven Precision in Skin Cancer Classification Using Deep Learning","authors":"Mohamad Abou Ali, F. Dornaika, I. Arganda-Carreras, Hussein Ali, Malak Karaouni","doi":"10.3390/biomedinformatics4010035","DOIUrl":null,"url":null,"abstract":"Background: In response to the escalating global concerns surrounding skin cancer, this study aims to address the imperative for precise and efficient diagnostic methodologies. Focusing on the intricate task of eight-class skin cancer classification, the research delves into the limitations of conventional diagnostic approaches, often hindered by subjectivity and resource constraints. The transformative potential of Artificial Intelligence (AI) in revolutionizing diagnostic paradigms is underscored, emphasizing significant improvements in accuracy and accessibility. Methods: Utilizing cutting-edge deep learning models on the ISIC2019 dataset, a comprehensive analysis is conducted, employing a diverse array of pre-trained ImageNet architectures and Vision Transformer models. To counteract the inherent class imbalance in skin cancer datasets, a pioneering “Naturalize” augmentation technique is introduced. This technique leads to the creation of two indispensable datasets—the Naturalized 2.4K ISIC2019 and groundbreaking Naturalized 7.2K ISIC2019 datasets—catalyzing advancements in classification accuracy. The “Naturalize” augmentation technique involves the segmentation of skin cancer images using the Segment Anything Model (SAM) and the systematic addition of segmented cancer images to a background image to generate new composite images. Results: The research showcases the pivotal role of AI in mitigating the risks of misdiagnosis and under-diagnosis in skin cancer. The proficiency of AI in analyzing vast datasets and discerning subtle patterns significantly augments the diagnostic prowess of dermatologists. Quantitative measures such as confusion matrices, classification reports, and visual analyses using Score-CAM across diverse dataset variations are meticulously evaluated. The culmination of these endeavors resulted in an unprecedented achievement—100% average accuracy, precision, recall, and F1-score—within the groundbreaking Naturalized 7.2K ISIC2019 dataset. Conclusion: This groundbreaking exploration highlights the transformative capabilities of AI-driven methodologies in reshaping the landscape of skin cancer diagnosis and patient care. The research represents a pivotal stride towards redefining dermatological diagnosis, showcasing the remarkable impact of AI-powered solutions in surmounting the challenges inherent in skin cancer diagnosis. The attainment of 100% across crucial metrics within the Naturalized 7.2K ISIC2019 dataset serves as a testament to the transformative capabilities of AI-driven approaches in reshaping the trajectory of skin cancer diagnosis and patient care. This pioneering work paves the way for a new era in dermatological diagnostics, heralding the dawn of unprecedented precision and efficacy in the identification and classification of skin cancers.","PeriodicalId":72394,"journal":{"name":"BioMedInformatics","volume":"63 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedInformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biomedinformatics4010035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In response to the escalating global concerns surrounding skin cancer, this study aims to address the imperative for precise and efficient diagnostic methodologies. Focusing on the intricate task of eight-class skin cancer classification, the research delves into the limitations of conventional diagnostic approaches, often hindered by subjectivity and resource constraints. The transformative potential of Artificial Intelligence (AI) in revolutionizing diagnostic paradigms is underscored, emphasizing significant improvements in accuracy and accessibility. Methods: Utilizing cutting-edge deep learning models on the ISIC2019 dataset, a comprehensive analysis is conducted, employing a diverse array of pre-trained ImageNet architectures and Vision Transformer models. To counteract the inherent class imbalance in skin cancer datasets, a pioneering “Naturalize” augmentation technique is introduced. This technique leads to the creation of two indispensable datasets—the Naturalized 2.4K ISIC2019 and groundbreaking Naturalized 7.2K ISIC2019 datasets—catalyzing advancements in classification accuracy. The “Naturalize” augmentation technique involves the segmentation of skin cancer images using the Segment Anything Model (SAM) and the systematic addition of segmented cancer images to a background image to generate new composite images. Results: The research showcases the pivotal role of AI in mitigating the risks of misdiagnosis and under-diagnosis in skin cancer. The proficiency of AI in analyzing vast datasets and discerning subtle patterns significantly augments the diagnostic prowess of dermatologists. Quantitative measures such as confusion matrices, classification reports, and visual analyses using Score-CAM across diverse dataset variations are meticulously evaluated. The culmination of these endeavors resulted in an unprecedented achievement—100% average accuracy, precision, recall, and F1-score—within the groundbreaking Naturalized 7.2K ISIC2019 dataset. Conclusion: This groundbreaking exploration highlights the transformative capabilities of AI-driven methodologies in reshaping the landscape of skin cancer diagnosis and patient care. The research represents a pivotal stride towards redefining dermatological diagnosis, showcasing the remarkable impact of AI-powered solutions in surmounting the challenges inherent in skin cancer diagnosis. The attainment of 100% across crucial metrics within the Naturalized 7.2K ISIC2019 dataset serves as a testament to the transformative capabilities of AI-driven approaches in reshaping the trajectory of skin cancer diagnosis and patient care. This pioneering work paves the way for a new era in dermatological diagnostics, heralding the dawn of unprecedented precision and efficacy in the identification and classification of skin cancers.
归化革命:利用深度学习实现前所未有的人工智能皮肤癌分类精度
背景:为应对全球对皮肤癌日益增长的关注,本研究旨在解决精确、高效诊断方法的当务之急。这项研究以皮肤癌八级分类这一复杂任务为重点,深入探讨了传统诊断方法的局限性,这些局限性往往受到主观性和资源限制的阻碍。研究强调了人工智能(AI)在彻底改变诊断模式方面的变革潜力,并强调了在准确性和可及性方面的显著改进。方法:利用 ISIC2019 数据集上的前沿深度学习模型,采用各种预训练的 ImageNet 架构和 Vision Transformer 模型,进行综合分析。为了消除皮肤癌数据集中固有的类别不平衡,我们引入了一种开创性的 "Naturalize "增强技术。这项技术创建了两个不可或缺的数据集--Naturalized 2.4K ISIC2019 数据集和开创性的 Naturalized 7.2K ISIC2019 数据集,促进了分类准确性的提高。归化 "增强技术包括使用 "任意分割模型"(SAM)对皮肤癌图像进行分割,并将分割后的癌症图像系统地添加到背景图像中,生成新的合成图像。研究结果这项研究展示了人工智能在降低皮肤癌误诊和漏诊风险方面的关键作用。人工智能在分析庞大数据集和辨别微妙模式方面的熟练程度大大提高了皮肤科医生的诊断能力。对混淆矩阵、分类报告等定量指标,以及使用 Score-CAM 对不同数据集进行的可视化分析,都进行了细致的评估。这些努力的最终结果是,在开创性的归化 7.2K ISIC2019 数据集中取得了前所未有的成就:平均准确率、精确度、召回率和 F1 分数均达到 100%。结论这项开创性的探索凸显了人工智能驱动方法在重塑皮肤癌诊断和患者护理方面的变革能力。这项研究是重新定义皮肤病诊断的关键一步,展示了人工智能驱动的解决方案在克服皮肤癌诊断固有挑战方面的显著影响。在归化的 7.2K ISIC2019 数据集中,关键指标达到了 100%,这证明了人工智能驱动的方法在重塑皮肤癌诊断和患者护理轨迹方面的变革能力。这项开创性的工作为皮肤病诊断的新时代铺平了道路,预示着在皮肤癌的识别和分类方面前所未有的精确性和有效性的到来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信