Application of the Parabola Method in Nonconvex Optimization

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Algorithms Pub Date : 2024-03-01 DOI:10.3390/a17030107
Anton Kolosnitsyn, Oleg Khamisov, Eugene Semenkin, Vladimir Nelyub
{"title":"Application of the Parabola Method in Nonconvex Optimization","authors":"Anton Kolosnitsyn, Oleg Khamisov, Eugene Semenkin, Vladimir Nelyub","doi":"10.3390/a17030107","DOIUrl":null,"url":null,"abstract":"We consider the Golden Section and Parabola Methods for solving univariate optimization problems. For multivariate problems, we use these methods as line search procedures in combination with well-known zero-order methods such as the coordinate descent method, the Hooke and Jeeves method, and the Rosenbrock method. A comprehensive numerical comparison of the obtained versions of zero-order methods is given in the present work. The set of test problems includes nonconvex functions with a large number of local and global optimum points. Zero-order methods combined with the Parabola method demonstrate high performance and quite frequently find the global optimum even for large problems (up to 100 variables).","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a17030107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Golden Section and Parabola Methods for solving univariate optimization problems. For multivariate problems, we use these methods as line search procedures in combination with well-known zero-order methods such as the coordinate descent method, the Hooke and Jeeves method, and the Rosenbrock method. A comprehensive numerical comparison of the obtained versions of zero-order methods is given in the present work. The set of test problems includes nonconvex functions with a large number of local and global optimum points. Zero-order methods combined with the Parabola method demonstrate high performance and quite frequently find the global optimum even for large problems (up to 100 variables).
抛物线法在非凸优化中的应用
我们考虑用黄金分割法和抛物线法解决单变量优化问题。对于多变量问题,我们将这些方法作为线搜索程序,与著名的零阶方法(如坐标下降法、Hooke 和 Jeeves 法以及 Rosenbrock 法)结合使用。本研究对所获得的零阶方法版本进行了全面的数值比较。测试问题集包括具有大量局部和全局最优点的非凸函数。与抛物线方法相结合的零阶方法表现出很高的性能,即使对于大型问题(多达 100 个变量),也能经常找到全局最优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithms
Algorithms Mathematics-Numerical Analysis
CiteScore
4.10
自引率
4.30%
发文量
394
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信