Anton Kolosnitsyn, Oleg Khamisov, Eugene Semenkin, Vladimir Nelyub
{"title":"Application of the Parabola Method in Nonconvex Optimization","authors":"Anton Kolosnitsyn, Oleg Khamisov, Eugene Semenkin, Vladimir Nelyub","doi":"10.3390/a17030107","DOIUrl":null,"url":null,"abstract":"We consider the Golden Section and Parabola Methods for solving univariate optimization problems. For multivariate problems, we use these methods as line search procedures in combination with well-known zero-order methods such as the coordinate descent method, the Hooke and Jeeves method, and the Rosenbrock method. A comprehensive numerical comparison of the obtained versions of zero-order methods is given in the present work. The set of test problems includes nonconvex functions with a large number of local and global optimum points. Zero-order methods combined with the Parabola method demonstrate high performance and quite frequently find the global optimum even for large problems (up to 100 variables).","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a17030107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the Golden Section and Parabola Methods for solving univariate optimization problems. For multivariate problems, we use these methods as line search procedures in combination with well-known zero-order methods such as the coordinate descent method, the Hooke and Jeeves method, and the Rosenbrock method. A comprehensive numerical comparison of the obtained versions of zero-order methods is given in the present work. The set of test problems includes nonconvex functions with a large number of local and global optimum points. Zero-order methods combined with the Parabola method demonstrate high performance and quite frequently find the global optimum even for large problems (up to 100 variables).