Ali İhsan Budur, İsmail Özen, Bülent Öztürk, Hasan Gedikli
{"title":"Investigation on Solid Particle Erosion Performance of Aluminum Alloy Materials for Leading-Edge Slat","authors":"Ali İhsan Budur, İsmail Özen, Bülent Öztürk, Hasan Gedikli","doi":"10.24874/ti.1528.08.23.11","DOIUrl":null,"url":null,"abstract":"This study aims to characterize solid particle erosion behaviors of three different aluminum alloys (AA2024-T351, AA6061-T651, and AA7075-T651) and reveal their erosion performances on leading-edge slat of airplane wings. Solid particle erosion tests were conducted using silicon carbide erodent particles under the conditions of six different impingement angles (20°-90°) and four different impact velocities (70-192 m/s). The erosion simulations of a leading-edge slat of the aforementioned aluminum alloys were numerically simulated at four different rotation angles (0°-15°) for three different impact velocities (130-250 m/s). A commercial ANSYS Fluent software using the Euler-Lagrange equation and an experimental data-based erosion model was used for the erosion simulations. The experimental results showed that the erosion rate increases with increasing impact velocity and the maximum erosion rate is obtained at the impingement angle of 30° which reflects the ductile manner. Of the three aluminum alloys, the AA6061-T651 exhibited the worst erosion behavior followed by the AA2024-T351 sample, whereas the AA7075-T651 had the best erosion resistance. The numerical results indicated that the erosion rate values of slat surfaces made up of three different aluminum alloys showed a slight increase after a slat rotation angle of 5°.","PeriodicalId":23320,"journal":{"name":"Tribology in Industry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24874/ti.1528.08.23.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to characterize solid particle erosion behaviors of three different aluminum alloys (AA2024-T351, AA6061-T651, and AA7075-T651) and reveal their erosion performances on leading-edge slat of airplane wings. Solid particle erosion tests were conducted using silicon carbide erodent particles under the conditions of six different impingement angles (20°-90°) and four different impact velocities (70-192 m/s). The erosion simulations of a leading-edge slat of the aforementioned aluminum alloys were numerically simulated at four different rotation angles (0°-15°) for three different impact velocities (130-250 m/s). A commercial ANSYS Fluent software using the Euler-Lagrange equation and an experimental data-based erosion model was used for the erosion simulations. The experimental results showed that the erosion rate increases with increasing impact velocity and the maximum erosion rate is obtained at the impingement angle of 30° which reflects the ductile manner. Of the three aluminum alloys, the AA6061-T651 exhibited the worst erosion behavior followed by the AA2024-T351 sample, whereas the AA7075-T651 had the best erosion resistance. The numerical results indicated that the erosion rate values of slat surfaces made up of three different aluminum alloys showed a slight increase after a slat rotation angle of 5°.
期刊介绍:
he aim of Tribology in Industry journal is to publish quality experimental and theoretical research papers in fields of the science of friction, wear and lubrication and any closely related fields. The scope includes all aspects of materials science, surface science, applied physics and mechanical engineering which relate directly to the subjects of wear and friction. Topical areas include, but are not limited to: Friction, Wear, Lubricants, Surface characterization, Surface engineering, Nanotribology, Contact mechanics, Coatings, Alloys, Composites, Tribological design, Biotribology, Green Tribology.