Use of graphs to assess well safety in drilling projects and during operations by identification of available barrier elements and consolidation of barrier envelopes

Q1 Earth and Planetary Sciences
{"title":"Use of graphs to assess well safety in drilling projects and during operations by identification of available barrier elements and consolidation of barrier envelopes","authors":"","doi":"10.1016/j.ptlrs.2024.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>Two independent barrier envelopes are the usual requirement used in most well operations to avoid catastrophic accidents. These are classified as primary – concerning preventing the occurrence of a kick, and secondary – concerning controlling the kick to avoid a blowout. Barrier envelopes consist of barrier elements, thus verifying the quality of these elements is fundamental. Barrier elements may be either redundant or mandatory, and these relationships are what constitute the barrier envelopes. In this work, we present a methodology to evaluate well safety by identifying existing barrier elements and barrier envelopes and mapping their relationships through the usage of graphs technique. This technique explicitly states the relationship between barriers and between them and envelopes. It enables a simpler visualization for well designers and allows the development of computer programs to control the safety and integrity of wells, both in the design phase and during drilling. 12 graphs are provided for a 4-phase well (conductor, surface, production, and drill-in), considering both the primary and secondary envelopes. Reasoning for constructing each graph is thoroughly provided. If these graphs are used, reliability values can then be assigned to each barrier element, which results in the reliability of entire barrier envelopes. This can be further extended to analyze the safety of each operation by applying the system to operational sequences and even comparing well designs.</p></div>","PeriodicalId":19756,"journal":{"name":"Petroleum Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096249524000255/pdfft?md5=99ec4494e7d1c016bf43f10c75fdb671&pid=1-s2.0-S2096249524000255-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Research","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096249524000255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Two independent barrier envelopes are the usual requirement used in most well operations to avoid catastrophic accidents. These are classified as primary – concerning preventing the occurrence of a kick, and secondary – concerning controlling the kick to avoid a blowout. Barrier envelopes consist of barrier elements, thus verifying the quality of these elements is fundamental. Barrier elements may be either redundant or mandatory, and these relationships are what constitute the barrier envelopes. In this work, we present a methodology to evaluate well safety by identifying existing barrier elements and barrier envelopes and mapping their relationships through the usage of graphs technique. This technique explicitly states the relationship between barriers and between them and envelopes. It enables a simpler visualization for well designers and allows the development of computer programs to control the safety and integrity of wells, both in the design phase and during drilling. 12 graphs are provided for a 4-phase well (conductor, surface, production, and drill-in), considering both the primary and secondary envelopes. Reasoning for constructing each graph is thoroughly provided. If these graphs are used, reliability values can then be assigned to each barrier element, which results in the reliability of entire barrier envelopes. This can be further extended to analyze the safety of each operation by applying the system to operational sequences and even comparing well designs.

在钻井项目中和作业期间,通过识别可用的屏障元素和整合屏障包络,使用图表评估油井安全
为避免灾难性事故的发生,大多数油井作业通常需要两个独立的防喷层。它们被分为一级--关于防止发生井喷,二级--关于控制井喷以避免井喷。屏障包层由屏障元件组成,因此验证这些元件的质量至关重要。屏障元素可能是多余的,也可能是必须的,这些关系构成了屏障包络。在这项工作中,我们提出了一种评估油井安全的方法,即通过使用图形技术识别现有的障碍元素和障碍包络,并映射它们之间的关系。该技术明确说明了障碍物之间以及障碍物与包络线之间的关系。它能为油井设计人员提供更简单的可视化方法,并允许开发计算机程序,以便在设计阶段和钻井过程中控制油井的安全性和完整性。考虑到主包层和次包层,提供了 12 个四阶段井(导流、地表、生产和钻进)的图表。每个图表都详细说明了构建的理由。如果使用这些图表,就可以为每个隔层元件分配可靠性值,从而得出整个隔层包络的可靠性。通过将该系统应用于作业序列,甚至比较油井设计,还可进一步扩展到分析每次作业的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Petroleum Research
Petroleum Research Earth and Planetary Sciences-Geology
CiteScore
7.10
自引率
0.00%
发文量
90
审稿时长
35 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信