Interaction of Carbon Nanotubes, Capped Carbon Nanotubes, CNT2–5, C60, C70, HO-C60, [C60]2, and [C60]3 Fullerenes with Virulence Factors of Gram-Negative and Gram-Positive Bacteria: Potential Applications for 3D-Printed Scaffolds

IF 3.1 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Mehran Alavi, M. Ashengroph, M. R. Mozafari
{"title":"Interaction of Carbon Nanotubes, Capped Carbon Nanotubes, CNT2–5, C60, C70, HO-C60, [C60]2, and [C60]3 Fullerenes with Virulence Factors of Gram-Negative and Gram-Positive Bacteria: Potential Applications for 3D-Printed Scaffolds","authors":"Mehran Alavi, M. Ashengroph, M. R. Mozafari","doi":"10.3390/inorganics12030077","DOIUrl":null,"url":null,"abstract":"The antimicrobial application of carbon nanomaterials, such as carbon nanotubes (CNTs), capped CNTs, CNT2–5, C60, C70, HO-C60, [C60]2, and [C60]3 fullerenes, is increasing, owing to their low cytotoxicity properties compared to other nanomaterials such as metallic nanoparticles. Enhanced mechanical properties and antibacterial activity can be caused by the incorporation of CNTs in 3-dimensional (3D) printed nanocomposites (NCs). The interruption of the bacterial membrane resulting from the cylindrical shape and high aspect ratio properties has been found to be the most prominent antibacterial mechanism of CNTs. However, the unraveling interaction of CNTs, capped CNTs, CNT2–5, C60, C70, HO-C60, [C60]2, and [C60]3 fullerenes with virulence factors of the main bacterial pathogenesis has not yet been understood. Therefore, in the present study, interactions of these carbon-based nanomaterials with the eight virulence factors, including protein kinase A and (ESX)-secreted protein B of Mycobacterium tuberculosis, pseudomonas elastase and exotoxin A of Pseudomonas aeruginosa, alpha-hemolysin and penicillin-binding protein 2a of Staphylococcus aureus, and shiga toxin 2a and heat-labile enterotoxin of Escherichia coli, were evaluated with the molecular docking method of AutoDock Vina. This study disclosed that the binding affinity was highest for CNT2–5 and [C60]3 toward alpha-hemolysin, with binding energies of −32.7 and −26.6 kcal/mol, respectively. The stability of the CNT2–5–alpha-hemolysin complex at different times was obtained according to the normal mode analysis of ElNémo and iMOD servers.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics12030077","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The antimicrobial application of carbon nanomaterials, such as carbon nanotubes (CNTs), capped CNTs, CNT2–5, C60, C70, HO-C60, [C60]2, and [C60]3 fullerenes, is increasing, owing to their low cytotoxicity properties compared to other nanomaterials such as metallic nanoparticles. Enhanced mechanical properties and antibacterial activity can be caused by the incorporation of CNTs in 3-dimensional (3D) printed nanocomposites (NCs). The interruption of the bacterial membrane resulting from the cylindrical shape and high aspect ratio properties has been found to be the most prominent antibacterial mechanism of CNTs. However, the unraveling interaction of CNTs, capped CNTs, CNT2–5, C60, C70, HO-C60, [C60]2, and [C60]3 fullerenes with virulence factors of the main bacterial pathogenesis has not yet been understood. Therefore, in the present study, interactions of these carbon-based nanomaterials with the eight virulence factors, including protein kinase A and (ESX)-secreted protein B of Mycobacterium tuberculosis, pseudomonas elastase and exotoxin A of Pseudomonas aeruginosa, alpha-hemolysin and penicillin-binding protein 2a of Staphylococcus aureus, and shiga toxin 2a and heat-labile enterotoxin of Escherichia coli, were evaluated with the molecular docking method of AutoDock Vina. This study disclosed that the binding affinity was highest for CNT2–5 and [C60]3 toward alpha-hemolysin, with binding energies of −32.7 and −26.6 kcal/mol, respectively. The stability of the CNT2–5–alpha-hemolysin complex at different times was obtained according to the normal mode analysis of ElNémo and iMOD servers.
碳纳米管、封端碳纳米管、CNT2-5、C60、C70、HO-C60、[C60]2 和 [C60]3 富勒烯与革兰氏阴性和革兰氏阳性细菌病毒因子的相互作用:三维打印支架的潜在应用
碳纳米材料,如碳纳米管(CNTs)、封端 CNTs、CNT2-5、C60、C70、HO-C60、[C60]2 和 [C60]3 富勒烯,由于其细胞毒性低于金属纳米颗粒等其他纳米材料,其抗菌应用正在不断增加。在三维(3D)打印纳米复合材料(NC)中加入碳纳米管可增强机械性能和抗菌活性。研究发现,CNT 的圆柱形和高纵横比特性可阻断细菌膜,这是 CNT 最突出的抗菌机制。然而,CNTs、封端 CNTs、CNT2-5、C60、C70、HO-C60、[C60]2 和 [C60]3 富勒烯与主要细菌致病因子的相互作用尚未被揭示。因此,在本研究中,这些碳基纳米材料与八种毒力因子的相互作用,包括结核分枝杆菌的蛋白激酶 A 和(ESX)分泌蛋白 B、铜绿假单胞菌的弹性蛋白酶和外毒素 A、利用 AutoDock Vina 的分子对接方法对金黄色葡萄球菌的α-溶血素和青霉素结合蛋白 2a 以及大肠杆菌的志贺毒素 2a 和热嗜性肠毒素进行了评估。研究结果表明,CNT2-5 和 [C60]3 与α-溶血素的结合亲和力最高,结合能分别为 -32.7 和 -26.6 kcal/mol。根据 ElNémo 和 iMOD 服务器的常模分析,得出了 CNT2-5-α- 溶血素复合物在不同时间的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganics
Inorganics Chemistry-Inorganic Chemistry
CiteScore
2.80
自引率
10.30%
发文量
193
审稿时长
6 weeks
期刊介绍: Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信