Gabriel S. Vieira , Afonso U. Fonseca , Naiane Maria de Sousa , Julio C. Ferreira , Juliana Paula Felix , Christian Dias Cabacinha , Fabrizzio Soares
{"title":"An automatic method for estimating insect defoliation with visual highlights of consumed leaf tissue regions","authors":"Gabriel S. Vieira , Afonso U. Fonseca , Naiane Maria de Sousa , Julio C. Ferreira , Juliana Paula Felix , Christian Dias Cabacinha , Fabrizzio Soares","doi":"10.1016/j.inpa.2024.03.001","DOIUrl":null,"url":null,"abstract":"<div><div>As an essential component of the architecture of a plant, leaves are crucial to sustaining decision-making in cultivars and effectively support agricultural processes. When the leaf area is constantly monitored, a plant’s health and productive capacity can be assessed to foment proactive and reactive strategies. Because of that, one of the most critical tasks in agricultural processes is estimating foliar damage. In this sense, we present an automatic method to estimate leaf stress caused by insect herbivory, including damage in border regions. As a novelty, we present a method with well-defined processing steps suitable for numerical analysis and visual inspection of defoliation severity. We describe the proposed method and evaluate its performance concerning 12 different plant species. Experimental results show high assertiveness in estimating leaf area loss with a concordance correlation coefficient of 0.98 for grape, soybean, potato, and strawberry leaves. A classic pattern recognition approach, named template matching, is at the core of the method whose performance is compared to cutting-edge techniques. Results demonstrated that the method achieves foliar damage quantification with precision comparable to deep learning models. The code prepared by the authors is publicly available.</div></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"12 1","pages":"Pages 40-53"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317324000192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As an essential component of the architecture of a plant, leaves are crucial to sustaining decision-making in cultivars and effectively support agricultural processes. When the leaf area is constantly monitored, a plant’s health and productive capacity can be assessed to foment proactive and reactive strategies. Because of that, one of the most critical tasks in agricultural processes is estimating foliar damage. In this sense, we present an automatic method to estimate leaf stress caused by insect herbivory, including damage in border regions. As a novelty, we present a method with well-defined processing steps suitable for numerical analysis and visual inspection of defoliation severity. We describe the proposed method and evaluate its performance concerning 12 different plant species. Experimental results show high assertiveness in estimating leaf area loss with a concordance correlation coefficient of 0.98 for grape, soybean, potato, and strawberry leaves. A classic pattern recognition approach, named template matching, is at the core of the method whose performance is compared to cutting-edge techniques. Results demonstrated that the method achieves foliar damage quantification with precision comparable to deep learning models. The code prepared by the authors is publicly available.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining