AdaBoost_wear: Adaboost model-based Python software for predicting the coefficient of friction of babbitt alloy

Mihail Kolev
{"title":"AdaBoost_wear: Adaboost model-based Python software for predicting the coefficient of friction of babbitt alloy","authors":"Mihail Kolev","doi":"10.32629/jai.v7i4.1206","DOIUrl":null,"url":null,"abstract":"AdaBoost_wear is a Python software that implements the AdaBoost algorithm to predict the coefficient of friction (COF) of B83 babbitt alloy as a function of time. The software uses data from pin-on-disk tests with different loads to train and test the model. The software also provides performance metrics, such as R2 score, mean squared error, and mean absolute error, to evaluate the accuracy of the predictions. The software also generates plots of the actual and predicted COF values, as well as histograms and boxplots of the COF distribution. The software is open source and released under the MIT license.","PeriodicalId":508223,"journal":{"name":"Journal of Autonomous Intelligence","volume":"18 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Autonomous Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32629/jai.v7i4.1206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

AdaBoost_wear is a Python software that implements the AdaBoost algorithm to predict the coefficient of friction (COF) of B83 babbitt alloy as a function of time. The software uses data from pin-on-disk tests with different loads to train and test the model. The software also provides performance metrics, such as R2 score, mean squared error, and mean absolute error, to evaluate the accuracy of the predictions. The software also generates plots of the actual and predicted COF values, as well as histograms and boxplots of the COF distribution. The software is open source and released under the MIT license.
AdaBoost_wear:基于 Adaboost 模型的 Python 软件,用于预测巴氏合金的摩擦系数
AdaBoost_wear 是一款 Python 软件,它实现了 AdaBoost 算法,用于预测 B83 巴比特合金的摩擦系数(COF)随时间变化的函数。该软件使用不同载荷下的针盘测试数据来训练和测试模型。软件还提供 R2 分数、平均平方误差和平均绝对误差等性能指标,以评估预测的准确性。软件还能生成实际 COF 值和预测 COF 值的曲线图,以及 COF 分布的直方图和方框图。该软件是开源软件,采用 MIT 许可发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信