Bimultipliers of R-algebroids

Gizem Kahriman
{"title":"Bimultipliers of R-algebroids","authors":"Gizem Kahriman","doi":"10.54286/ikjm.1433913","DOIUrl":null,"url":null,"abstract":"Group action is determined bythe automorphism group and algebra action is defined by the multiplication algebra. In the study we generalize the multiplication algebra \nby defining multipliers of an R-algebroid M. Firstly, the set of bimultipliers on an R-algebroid is introduced, it is denoted by Bim(M), then it is proved that this set is an R-algebroid, \nit is called multiplication R-algebroid. Using this Bim(M), for an R-algebroid morphism A → Bim(M) it is shown that this morphism gives an R-algebroid action. Then we examine \nsome of the properties associated with this action.","PeriodicalId":114258,"journal":{"name":"Ikonion Journal of Mathematics","volume":"48 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ikonion Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54286/ikjm.1433913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Group action is determined bythe automorphism group and algebra action is defined by the multiplication algebra. In the study we generalize the multiplication algebra by defining multipliers of an R-algebroid M. Firstly, the set of bimultipliers on an R-algebroid is introduced, it is denoted by Bim(M), then it is proved that this set is an R-algebroid, it is called multiplication R-algebroid. Using this Bim(M), for an R-algebroid morphism A → Bim(M) it is shown that this morphism gives an R-algebroid action. Then we examine some of the properties associated with this action.
R-gebroids 的双乘法器
群作用由自变群决定,而代数作用则由乘法代数定义。在本研究中,我们通过定义 R-gebroid M 的乘法器来概括乘法代数。首先,引入 R-gebroid 上的双乘法器集合,用 Bim(M) 表示,然后证明该集合是一个 R-gebroid,它被称为乘法 R-gebroid。利用这个 Bim(M),对于一个 R-algebroid 形态 A → Bim(M),可以证明这个形态给出了一个 R-algebroid 作用。然后,我们将研究与这一作用相关的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信