Detection of Depression from Arabic Tweets Using Machine Learning

Areej Alzoubi, Ahmad Alaiad, Khaled Alkhattib, A. Alkhatib, Aseel Abu Aqoulah, Almo’men Bellah Alawnah, Ola Hayajnah
{"title":"Detection of Depression from Arabic Tweets Using Machine Learning","authors":"Areej Alzoubi, Ahmad Alaiad, Khaled Alkhattib, A. Alkhatib, Aseel Abu Aqoulah, Almo’men Bellah Alawnah, Ola Hayajnah","doi":"10.61356/smij.2024.11103","DOIUrl":null,"url":null,"abstract":"Depression has become the disease of the times and has caused suffering and disruption in the lives of millions of people around the world of all ages. Method: We obtained 16,581 Arabic tweets, whether they express depression or not, and the symptoms they contain for 1439 Arab Twitter users. We classified whether the user is depressed or not. We used many machine learning algorithms: DT, RF, Mutational Naïve Bayes, and AdaBoost , we also used feature extraction like BOW and TF-IDF. The result: Our experiments showed that Mutational Naïve Bayes with TF-IDF had the highest accuracy of 86% when rating tweets. Conclusion: Caring for the mental health of people is very important, as some measures must be taken to maintain the mental health of people in the early stages of infection.","PeriodicalId":471548,"journal":{"name":"Sustainable Machine Intelligence Journal","volume":"29 27","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Machine Intelligence Journal","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.61356/smij.2024.11103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Depression has become the disease of the times and has caused suffering and disruption in the lives of millions of people around the world of all ages. Method: We obtained 16,581 Arabic tweets, whether they express depression or not, and the symptoms they contain for 1439 Arab Twitter users. We classified whether the user is depressed or not. We used many machine learning algorithms: DT, RF, Mutational Naïve Bayes, and AdaBoost , we also used feature extraction like BOW and TF-IDF. The result: Our experiments showed that Mutational Naïve Bayes with TF-IDF had the highest accuracy of 86% when rating tweets. Conclusion: Caring for the mental health of people is very important, as some measures must be taken to maintain the mental health of people in the early stages of infection.
利用机器学习从阿拉伯语推文中检测抑郁症
抑郁症已成为一种时代病,给全世界数百万不同年龄段的人带来了痛苦,破坏了他们的生活。研究方法我们获取了 1439 名阿拉伯 Twitter 用户的 16581 条阿拉伯语推文,这些推文是否表达了抑郁情绪,以及其中包含的症状。我们对用户是否抑郁进行了分类。我们使用了多种机器学习算法:我们还使用了 BOW 和 TF-IDF 等特征提取算法。实验结果实验结果表明,采用 TF-IDF 的突变奈夫贝叶斯算法对推文进行评级的准确率最高,达到 86%。结论关注人们的心理健康非常重要,因为在感染初期必须采取一些措施来维护人们的心理健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信