Improved UNet‐based magnetic resonance imaging segmentation of demyelinating diseases with small lesion regions

Minhui Liu, Tianlei Wang, Dekang Liu, Feng Gao, Jiuwen Cao
{"title":"Improved UNet‐based magnetic resonance imaging segmentation of demyelinating diseases with small lesion regions","authors":"Minhui Liu, Tianlei Wang, Dekang Liu, Feng Gao, Jiuwen Cao","doi":"10.1049/ccs2.12099","DOIUrl":null,"url":null,"abstract":"Accurate magnetic resonance imaging (MRI) segmentation plays a critical role in the diagnosis and treatment of demyelinating diseases. But the existing automatic segmentation methods are not suitable for the segmentation of demyelinating lesions with small lesion size, highly diffuse edges and complex boundary shapes. An improved model is proposed for demyelinating diseases MRI segmentation based on the U‐shaped structure convolution neural networks (UNet). A context information weighting fusion (CIWF) module and a modified channel attention (MCA) module are developed and embedded in UNet to address the small lesion region and diffuse edge issues. The CIWF module can dynamically screen and fuse shallow and deep features at different stages, making the model pay more attention to small lesions. The MCA module enables the model to learn diverse features by adding weights to the channel, which helps in diffuse edge segmentation. Comparisons with many existing methods on real‐world demyelinating disease MRI segmentation dataset show that our method achieve the highest Dice metric.","PeriodicalId":502421,"journal":{"name":"Cognitive Computation and Systems","volume":"14 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ccs2.12099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate magnetic resonance imaging (MRI) segmentation plays a critical role in the diagnosis and treatment of demyelinating diseases. But the existing automatic segmentation methods are not suitable for the segmentation of demyelinating lesions with small lesion size, highly diffuse edges and complex boundary shapes. An improved model is proposed for demyelinating diseases MRI segmentation based on the U‐shaped structure convolution neural networks (UNet). A context information weighting fusion (CIWF) module and a modified channel attention (MCA) module are developed and embedded in UNet to address the small lesion region and diffuse edge issues. The CIWF module can dynamically screen and fuse shallow and deep features at different stages, making the model pay more attention to small lesions. The MCA module enables the model to learn diverse features by adding weights to the channel, which helps in diffuse edge segmentation. Comparisons with many existing methods on real‐world demyelinating disease MRI segmentation dataset show that our method achieve the highest Dice metric.
基于 UNet 的脱髓鞘疾病磁共振成像小病灶区域分割改进技术
准确的磁共振成像(MRI)分割在脱髓鞘疾病的诊断和治疗中起着至关重要的作用。但现有的自动分割方法不适合分割病灶体积小、边缘高度弥散、边界形状复杂的脱髓鞘病变。本文提出了一种基于 U 型结构卷积神经网络(UNet)的脱髓鞘疾病磁共振成像分割改进模型。为解决小病变区域和弥散边缘问题,开发了上下文信息加权融合(CIWF)模块和修正通道注意(MCA)模块,并将其嵌入 UNet。CIWF 模块可在不同阶段动态筛选和融合浅层和深层特征,使模型更加关注小病变。MCA 模块通过为通道添加权重,使模型能够学习多样化的特征,从而有助于弥漫边缘的分割。在真实世界脱髓鞘疾病磁共振成像分割数据集上与许多现有方法的比较表明,我们的方法达到了最高的 Dice 指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信