Fixed points of $G$-monotone mappings in metric and modular spaces

Pub Date : 2024-03-03 DOI:10.12775/tmna.2024.003
Dau Hong Quan, A. Wiśnicki
{"title":"Fixed points of $G$-monotone mappings in metric and modular spaces","authors":"Dau Hong Quan, A. Wiśnicki","doi":"10.12775/tmna.2024.003","DOIUrl":null,"url":null,"abstract":"Let $C$ be a bounded, closed and convex subset of a reflexive metric space with a digraph $G$ such that $G$-intervals along walks are closed and convex. \nIn the main theorem we show that if $T\\colon C\\rightarrow C$ is a monotone $G$-nonexpansive mapping and there exists $c\\in C$ such that $Tc\\in [c,\\rightarrow )_{G}$, \nthen $T$ has a fixed point provided for each $a\\in C$, $[a,a]_{G}$ has the fixed point property for nonexpansive mappings. \nIn particular, it gives an essential generalization of the Dehaish-Khamsi theorem concerning partial orders in complete uniformly convex hyperbolic metric spaces. \nSome counterparts of this result for modular spaces, and for commutative families of mappings are given too.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2024.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $C$ be a bounded, closed and convex subset of a reflexive metric space with a digraph $G$ such that $G$-intervals along walks are closed and convex. In the main theorem we show that if $T\colon C\rightarrow C$ is a monotone $G$-nonexpansive mapping and there exists $c\in C$ such that $Tc\in [c,\rightarrow )_{G}$, then $T$ has a fixed point provided for each $a\in C$, $[a,a]_{G}$ has the fixed point property for nonexpansive mappings. In particular, it gives an essential generalization of the Dehaish-Khamsi theorem concerning partial orders in complete uniformly convex hyperbolic metric spaces. Some counterparts of this result for modular spaces, and for commutative families of mappings are given too.
分享
查看原文
度量空间和模态空间中 G$ 单调映射的定点
让 $C$ 是一个有界的、封闭的和凸的反身度量空间的子集,它有一个数图 $G$,使得沿走道的 $G$ 间隔是封闭的和凸的。在主定理中,我们证明了如果 $T\colon C\rightarrow C$ 是一个单调的 $G$ 非膨胀映射,并且存在 $c\in C$ 使得 $Tc\in [c,\rightarrow )_{G}$,那么 $T$ 有一个固定点,条件是对于 C$ 中的每个 $a\,$[a,a]_{G}$ 具有非膨胀映射的固定点性质。特别是,它给出了关于完全均匀凸双曲度量空间中部分阶的德海什-卡姆西(Dehaish-Khamsi)定理的基本概括。此外,还给出了这一结果在模块空间和交换映射族中的一些对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信