Comments on the Bernoulli Distribution and Hilbe’s Implicit Extra-Dispersion

Stats Pub Date : 2024-03-05 DOI:10.3390/stats7010016
Daniel A. Griffith
{"title":"Comments on the Bernoulli Distribution and Hilbe’s Implicit Extra-Dispersion","authors":"Daniel A. Griffith","doi":"10.3390/stats7010016","DOIUrl":null,"url":null,"abstract":"For decades, conventional wisdom maintained that binary 0–1 Bernoulli random variables cannot contain extra-binomial variation. Taking an unorthodox stance, Hilbe actively disagreed, especially for correlated observation instances, arguing that the universally adopted diagnostic Pearson or deviance dispersion statistics are insensitive to a variance anomaly in a binary context, and hence simply fail to detect it. However, having the intuition and insight to sense the existence of this departure from standard mathematical statistical theory, but being unable to effectively isolate it, he classified this particular over-/under-dispersion phenomenon as implicit. This paper explicitly exposes his hidden quantity by demonstrating that the variance in/deflation it represents occurs in an underlying predicted beta random variable whose real number values are rounded to their nearest integers to convert to a Bernoulli random variable, with this discretization masking any materialized extra-Bernoulli variation. In doing so, asymptotics linking the beta-binomial and Bernoulli distributions show another conventional wisdom misconception, namely a mislabeling substitution involving the quasi-Bernoulli random variable; this undeniably is not a quasi-likelihood situation. A public bell pepper disease dataset exhibiting conspicuous spatial autocorrelation furnishes empirical examples illustrating various features of this advocated proposition.","PeriodicalId":503278,"journal":{"name":"Stats","volume":"107 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats7010016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For decades, conventional wisdom maintained that binary 0–1 Bernoulli random variables cannot contain extra-binomial variation. Taking an unorthodox stance, Hilbe actively disagreed, especially for correlated observation instances, arguing that the universally adopted diagnostic Pearson or deviance dispersion statistics are insensitive to a variance anomaly in a binary context, and hence simply fail to detect it. However, having the intuition and insight to sense the existence of this departure from standard mathematical statistical theory, but being unable to effectively isolate it, he classified this particular over-/under-dispersion phenomenon as implicit. This paper explicitly exposes his hidden quantity by demonstrating that the variance in/deflation it represents occurs in an underlying predicted beta random variable whose real number values are rounded to their nearest integers to convert to a Bernoulli random variable, with this discretization masking any materialized extra-Bernoulli variation. In doing so, asymptotics linking the beta-binomial and Bernoulli distributions show another conventional wisdom misconception, namely a mislabeling substitution involving the quasi-Bernoulli random variable; this undeniably is not a quasi-likelihood situation. A public bell pepper disease dataset exhibiting conspicuous spatial autocorrelation furnishes empirical examples illustrating various features of this advocated proposition.
对伯努利分布和希尔贝隐式外扩散的评论
几十年来,传统观点一直认为二进制 0-1 伯努利随机变量不可能包含二项外变异。希尔贝采取了一种非正统的立场,积极反对这种观点,尤其是对于相关观测实例,他认为普遍采用的诊断性皮尔逊或偏差离散统计对二进制背景下的方差异常不敏感,因此根本无法发现它。然而,他凭借直觉和洞察力察觉到了这种偏离标准数理统计理论的存在,但却无法有效地将其分离出来,因此他将这种特殊的过离散/欠离散现象归类为隐性现象。本文明确揭示了他的隐含量,证明了它所代表的 "过/欠分散 "方差发生在一个潜在的预测贝塔随机变量中,其实数值被四舍五入为最接近的整数,以转换为伯努利随机变量,这种离散化掩盖了任何实质化的伯努利外变异。在此过程中,连接贝塔二项式和伯努利分布的渐近线显示了另一种传统智慧的误解,即涉及准伯努利随机变量的错误标签替换;不可否认,这不是一种准可能性情况。一个表现出明显空间自相关性的公共甜椒病数据集提供了经验实例,说明了这一主张的各种特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信