Consistency of the Bayes method for the inverse scattering problem

Takashi Furuya, Pu-Zhao Kow, Jenn-Nan Wang
{"title":"Consistency of the Bayes method for the inverse scattering problem","authors":"Takashi Furuya, Pu-Zhao Kow, Jenn-Nan Wang","doi":"10.1088/1361-6420/ad3089","DOIUrl":null,"url":null,"abstract":"\n In this work, we consider the inverse scattering problem of determining an unknown refractive index from the far-field measurements using the nonparametric Bayesian approach. We use a collection of large ``samples'', which are noisy discrete measurements taking from the scattering amplitude. We will study the frequentist property of the posterior distribution as the sample size tends to infinity. Our aim is to establish the consistency of the posterior distribution with an explicit contraction rate in terms of the sample size. We will consider two different priors on the space of parameters. The proof relies on the stability estimates of the forward and inverse problems. Due to the ill-posedness of the inverse scattering problem, the contraction rate is of a logarithmic type. We also show that such contraction rate is optimal in the statistical minimax sense.","PeriodicalId":508687,"journal":{"name":"Inverse Problems","volume":"142 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad3089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we consider the inverse scattering problem of determining an unknown refractive index from the far-field measurements using the nonparametric Bayesian approach. We use a collection of large ``samples'', which are noisy discrete measurements taking from the scattering amplitude. We will study the frequentist property of the posterior distribution as the sample size tends to infinity. Our aim is to establish the consistency of the posterior distribution with an explicit contraction rate in terms of the sample size. We will consider two different priors on the space of parameters. The proof relies on the stability estimates of the forward and inverse problems. Due to the ill-posedness of the inverse scattering problem, the contraction rate is of a logarithmic type. We also show that such contraction rate is optimal in the statistical minimax sense.
贝叶斯法在反向散射问题上的一致性
在这项工作中,我们使用非参数贝叶斯方法考虑了从远场测量值确定未知折射率的反向散射问题。我们使用了大量的 "样本 "集合,这些样本是从散射振幅中提取的有噪声的离散测量值。我们将研究当样本量趋于无穷大时,后验分布的常量性质。我们的目标是建立后验分布与样本量的明确收缩率的一致性。我们将考虑参数空间上的两种不同先验。证明依赖于正问题和反问题的稳定性估计。由于反向散射问题的不确定性,收缩率是对数类型的。我们还证明了这种收缩率在统计最小意义上是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信