Uniqueness results for inverse source problems for semilinear elliptic equations

Tony Liimatainen, Yi-Hsuan Lin
{"title":"Uniqueness results for inverse source problems for semilinear elliptic equations","authors":"Tony Liimatainen, Yi-Hsuan Lin","doi":"10.1088/1361-6420/ad3088","DOIUrl":null,"url":null,"abstract":"\n We study inverse source problems associated to semilinear elliptic equations of the form \\[ \\Delta u(x)+a(x,u)=F(x) \\] on a bounded domain $\\Omega\\subset \\R^n$, $n\\geq 2$. We show that it is possible to use nonlinearity to recover both the source $F$ and the nonlinearity $a(x,u)$ simultaneously and uniquely for a class of nonlinearities. This is in contrast to inverse source problems for linear equations, which always have a natural (gauge) symmetry that obstructs \\tbr{the} unique recovery of the source. The class of nonlinearities for which we can uniquely recover the source and nonlinearity, \\tbr{includes} a class of polynomials, which we characterize, and exponential nonlinearities. For general nonlinearities $a(x,u)$, we recover the source $F(x)$ and the Taylor coefficients $\\p_u^ka(x,u)$ up to a gauge symmetry. We recover general polynomial nonlinearities up to \\tbr{the gauge} symmetry. Our results \\tbr{also} generalize results of \\cite{FO19,LLLS2019partial} by removing the assumption that $u\\equiv 0$ is a solution. To prove our results, we consider linearizations around possibly large solutions. Our results can lead to new practical applications, because we show that many practical models do not have the obstruction for unique recovery that has restricted the applicability of inverse source problems for linear models.","PeriodicalId":508687,"journal":{"name":"Inverse Problems","volume":"46 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad3088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study inverse source problems associated to semilinear elliptic equations of the form \[ \Delta u(x)+a(x,u)=F(x) \] on a bounded domain $\Omega\subset \R^n$, $n\geq 2$. We show that it is possible to use nonlinearity to recover both the source $F$ and the nonlinearity $a(x,u)$ simultaneously and uniquely for a class of nonlinearities. This is in contrast to inverse source problems for linear equations, which always have a natural (gauge) symmetry that obstructs \tbr{the} unique recovery of the source. The class of nonlinearities for which we can uniquely recover the source and nonlinearity, \tbr{includes} a class of polynomials, which we characterize, and exponential nonlinearities. For general nonlinearities $a(x,u)$, we recover the source $F(x)$ and the Taylor coefficients $\p_u^ka(x,u)$ up to a gauge symmetry. We recover general polynomial nonlinearities up to \tbr{the gauge} symmetry. Our results \tbr{also} generalize results of \cite{FO19,LLLS2019partial} by removing the assumption that $u\equiv 0$ is a solution. To prove our results, we consider linearizations around possibly large solutions. Our results can lead to new practical applications, because we show that many practical models do not have the obstruction for unique recovery that has restricted the applicability of inverse source problems for linear models.
半线性椭圆方程反源问题的唯一性结果
我们研究了与形式为 \[ \Delta u(x)+a(x,u)=F(x) \] on a bounded domain $\Omega\subset \R^n$, $n\geq 2$ 的半线性椭圆方程相关的逆源问题。我们证明,对于一类非线性,可以利用非线性同时且唯一地恢复源 $F$ 和非线性 $a(x,u)$。这与线性方程的逆源问题形成了鲜明对比,后者总是有一个自然(规)对称性阻碍源的唯一恢复。我们可以唯一复原源和非线性的一类非线性,包括我们所描述的一类多项式和指数非线性。对于一般的非线性变量 $a(x,u)$,我们可以恢复源变量 $F(x)$和泰勒系数 $\p_u^ka(x,u)$ 直到一个规整对称性。我们恢复了直至规对称的一般多项式非线性。我们的结果还通过取消$u/equiv 0$是解的假设,概括了\cite{FO19,LLLS2019partial}的结果。为了证明我们的结果,我们考虑了围绕可能的大解的线性化。我们的结果可以带来新的实际应用,因为我们证明了许多实际模型并不存在限制线性模型逆源问题适用性的唯一恢复障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信