A subspace aggregating algorithm for accurate classification

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Saeid Amiri, Reza Modarres
{"title":"A subspace aggregating algorithm for accurate classification","authors":"Saeid Amiri, Reza Modarres","doi":"10.1007/s00180-024-01476-3","DOIUrl":null,"url":null,"abstract":"<p>We present a technique for learning via aggregation in supervised classification. The new method improves classification performance, regardless of which classifier is at its core. This approach exploits the information hidden in subspaces by combinations of aggregating variables and is applicable to high-dimensional data sets. We provide algorithms that randomly divide the variables into smaller subsets and permute them before applying a classification method to each subset. We combine the resulting classes to predict the class membership. Theoretical and simulation analyses consistently demonstrate the high accuracy of our classification methods. In comparison to aggregating observations through sampling, our approach proves to be significantly more effective. Through extensive simulations, we evaluate the accuracy of various classification methods. To further illustrate the effectiveness of our techniques, we apply them to five real-world data sets.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"12 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01476-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a technique for learning via aggregation in supervised classification. The new method improves classification performance, regardless of which classifier is at its core. This approach exploits the information hidden in subspaces by combinations of aggregating variables and is applicable to high-dimensional data sets. We provide algorithms that randomly divide the variables into smaller subsets and permute them before applying a classification method to each subset. We combine the resulting classes to predict the class membership. Theoretical and simulation analyses consistently demonstrate the high accuracy of our classification methods. In comparison to aggregating observations through sampling, our approach proves to be significantly more effective. Through extensive simulations, we evaluate the accuracy of various classification methods. To further illustrate the effectiveness of our techniques, we apply them to five real-world data sets.

Abstract Image

用于精确分类的子空间聚合算法
我们提出了一种在监督分类中通过聚合进行学习的技术。无论哪种分类器是其核心,新方法都能提高分类性能。这种方法利用了聚合变量组合隐藏在子空间中的信息,适用于高维数据集。我们提供的算法可将变量随机划分为较小的子集,并在对每个子集应用分类方法之前对其进行排列。我们将得到的类别结合起来,以预测类别成员资格。理论和模拟分析一致证明了我们的分类方法具有很高的准确性。与通过抽样来汇总观察结果相比,我们的方法被证明更为有效。通过大量模拟,我们评估了各种分类方法的准确性。为了进一步说明我们技术的有效性,我们将其应用于五个真实世界的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信