{"title":"Invariant measures for -free systems revisited","authors":"AURELIA DYMEK, JOANNA KUŁAGA-PRZYMUS, DANIEL SELL","doi":"10.1017/etds.2024.7","DOIUrl":null,"url":null,"abstract":"For <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000075_inline2.png\" /> <jats:tex-math> $\\mathscr {B} \\subseteq \\mathbb {N} $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000075_inline3.png\" /> <jats:tex-math> $ \\mathscr {B} $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-free subshift <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000075_inline4.png\" /> <jats:tex-math> $ X_{\\eta } $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the orbit closure of the characteristic function of the set of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000075_inline5.png\" /> <jats:tex-math> $ \\mathscr {B} $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-free integers. We show that many results about invariant measures and entropy, previously only known for the hereditary closure of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000075_inline6.png\" /> <jats:tex-math> $ X_{\\eta } $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, have their analogues for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000075_inline7.png\" /> <jats:tex-math> $ X_{\\eta } $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as well. In particular, we settle in the affirmative a conjecture of Keller about a description of such measures [G. Keller. Generalized heredity in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000075_inline8.png\" /> <jats:tex-math> $\\mathcal B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-free systems. <jats:italic>Stoch. Dyn.</jats:italic>21(3) (2021), Paper No. 2140008]. A central assumption in our work is that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000075_inline9.png\" /> <jats:tex-math> $\\eta ^{*} $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (the Toeplitz sequence that generates the unique minimal component of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000075_inline10.png\" /> <jats:tex-math> $ X_{\\eta } $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) is regular. From this, we obtain natural periodic approximations that we frequently use in our proofs to bound the elements in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000075_inline11.png\" /> <jats:tex-math> $ X_{\\eta } $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> from above and below.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For $\mathscr {B} \subseteq \mathbb {N} $ , the $ \mathscr {B} $ -free subshift $ X_{\eta } $ is the orbit closure of the characteristic function of the set of $ \mathscr {B} $ -free integers. We show that many results about invariant measures and entropy, previously only known for the hereditary closure of $ X_{\eta } $ , have their analogues for $ X_{\eta } $ as well. In particular, we settle in the affirmative a conjecture of Keller about a description of such measures [G. Keller. Generalized heredity in $\mathcal B$ -free systems. Stoch. Dyn.21(3) (2021), Paper No. 2140008]. A central assumption in our work is that $\eta ^{*} $ (the Toeplitz sequence that generates the unique minimal component of $ X_{\eta } $ ) is regular. From this, we obtain natural periodic approximations that we frequently use in our proofs to bound the elements in $ X_{\eta } $ from above and below.