On the definition of Merge

Syntax Pub Date : 2024-03-08 DOI:10.1111/synt.12287
Erik Zyman
{"title":"On the definition of Merge","authors":"Erik Zyman","doi":"10.1111/synt.12287","DOIUrl":null,"url":null,"abstract":"Two fundamental tasks of syntactic inquiry are to identify the elementary structure-building operations and to determine what properties they have and why. This article aims to bring us closer to those goals by investigating Merge. Two recent definitions of Merge are evaluated. It is argued that both have significant strengths but also some drawbacks, and that set-theoretic definitions of Merge in general face conceptual problems. It is proposed that Merge is not set-theoretic but graph-theoretic in nature: the syntactic objects it operates on and creates are (bare-phrase-structure-compliant) phrase-structure trees. Two new formal definitions of Merge are proposed and evaluated. One obeys the No-Tampering Condition but makes it unclear why Merge(<mjx-container aria-label=\"alpha comma beta\" ctxtmenu_counter=\"0\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,1,2\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"sequence\" data-semantic-speech=\"alpha comma beta\" data-semantic-type=\"punctuated\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"3\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/912f0c60-02ca-4dc0-8efd-fcd161777bda/synt12287-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,1,2\" data-semantic-content=\"1\" data-semantic-role=\"sequence\" data-semantic-speech=\"alpha comma beta\" data-semantic-type=\"punctuated\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">α</mi><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"3\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">β</mi></mrow>$$ \\alpha, \\beta $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>) satisfies only one selectional feature of <mjx-container aria-label=\"alpha\" ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"alpha\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/614e7d0f-d21f-4d3b-936f-8412ecb9c910/synt12287-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"alpha\" data-semantic-type=\"identifier\">α</mi></mrow>$$ \\alpha $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, not all of them. The other accounts for that observation but narrowly violates the No-Tampering Condition. The larger picture that emerges is one in which Merge is a graph-theoretic, not a set-theoretic, operation.","PeriodicalId":501329,"journal":{"name":"Syntax","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Syntax","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/synt.12287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two fundamental tasks of syntactic inquiry are to identify the elementary structure-building operations and to determine what properties they have and why. This article aims to bring us closer to those goals by investigating Merge. Two recent definitions of Merge are evaluated. It is argued that both have significant strengths but also some drawbacks, and that set-theoretic definitions of Merge in general face conceptual problems. It is proposed that Merge is not set-theoretic but graph-theoretic in nature: the syntactic objects it operates on and creates are (bare-phrase-structure-compliant) phrase-structure trees. Two new formal definitions of Merge are proposed and evaluated. One obeys the No-Tampering Condition but makes it unclear why Merge() satisfies only one selectional feature of , not all of them. The other accounts for that observation but narrowly violates the No-Tampering Condition. The larger picture that emerges is one in which Merge is a graph-theoretic, not a set-theoretic, operation.
关于合并的定义
句法研究的两项基本任务是识别基本的结构构建操作,并确定这些操作具有哪些特性及其原因。本文旨在通过研究 "合并"(Merge)使我们更接近这些目标。本文评估了最近关于 "合并 "的两个定义。文章认为,这两个定义都有很大的优点,但也有一些缺点,而且一般来说,集合论的合并定义都面临概念上的问题。有学者提出,Merge 的本质不是集合论,而是图论:它所操作和创建的句法对象是(符合裸词组结构的)词组结构树。本文提出并评估了两种新的合并形式定义。其中一个符合 "不篡改条件"(No-Tampering Condition),但不清楚为什么 Merge(α,β$$ \alpha, \beta $$)只能满足 α$$ \alpha $$的一个选择特征,而不是所有特征。另一种方法解释了这一观察结果,但狭隘地违反了 "不篡改条件"。由此可以看出,"合并 "是一种图论操作,而不是集合论操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信